Comparative Studies of Recirculatory Microbial Desalination Cell–Microbial Electrolysis Cell Coupled Systems
Abstract
:1. Introduction
- Which MEC system performs efficiently in the removal of Fe2+ and Pb2+?
- What are the mechanisms of heavy metal removal in these two MECs?
- Does the use of MDC as a power source to the MEC perform more efficiently than the use of other power sources?
- What are the mechanisms of ammonium ions’ transport from the middle chamber of the MDC?
- Does the type of coupled MEC affect desalination in the MDC?
- Do pH and conductivity affect the performance of the MDC–MEC coupled system?
2. Materials and Methods
2.1. MDC Construction
2.2. MEC Construction
2.3. Medium
2.4. MDC–MEC Operation
2.5. Controls
2.6. Analysis and Calculations
3. Results and Discussion
3.1. Pb2+ and Fe2+ Removal in the MEC Systems within a 48-h Cycle
3.2. Effect of COD and Desalination on Electricity Generation in the Different MECs
3.3. Effect of pH and Conductivity within a 48-h Cycle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kallis, G.; Kiparsky, M.; Milman, A.; Ray, I. Glossing Over the Complexity of Water. Science 2006, 314, 1387–1388. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2018, 9, 167. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Koomson, D.A.; Huang, J.; Amponsah, E.I.; Darkwah, W.K.; Miwornunyuie, N.; Li, K.; Dong, X.H. A review from environmental management to environmental governance: Paradigm shift for sustainable mining practice in Ghana. Environ. Dev. Sustain. 2020, 23, 9710–9724. [Google Scholar] [CrossRef]
- Guidelines for Drinking-Water Quality, 4th edition, Incorporating the 1st Addendum. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 30 July 2021).
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Capturing Ammonia in Flue Gas Condensate Treatment for Biomass Power Stations with Liqui-Cel® Membrane Contactors. Available online: https://www.wwdmag.com/capturing-ammonia-flue-gas-condensate-treatment-biomass-power-stations-liqui-cel-membrane-contactors (accessed on 30 July 2021).
- Zhang, Y.; Angelidaki, I. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia. Bioresour. Technol. 2015, 177, 233–239. [Google Scholar] [CrossRef]
- Krakat, N.; Anjum, R.; Dietz, D.; Demirel, B. Methods of ammonia removal in anaerobic digestion: A review. Water Sci. Technol. 2017, 76, 1925–1938. [Google Scholar] [CrossRef]
- Xie, Z.; Duong, T.; Hoang, M.; Nguyen, C.; Bolto, B. Ammonia removal by sweep gas membrane distillation. Water Res. 2009, 43, 1693–1699. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Capodaglio, A.G. Bioelectrochemical systems for removal of selected metals and perchlorate from groundwater: A review. Energies 2018, 11, 2643. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Singh, P. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J. Exp. Biol. 2009, 47, 760–765. [Google Scholar]
- Wang, L.K. Handbook of Industrial and Hazardous Wastes Treatment; CRC Press: Boca Raton, FL, USA, 2004; pp. 1010–1064. [Google Scholar]
- Utami, T.S.; Arbianti, R.; Manaf, B.N. Sea water desalination using Debaryomyces hansenii with microbial desalination cell technology. Int. J. Technol. 2015, 6, 1094–1100. [Google Scholar] [CrossRef]
- Guang, L.; Koomson, D.A.; Jingyu, H.; Ewusi-Mensah, D.; Miwornunyuie, N. Performance of exoelectrogenic bacteria used in microbial desalination cell technology. Int. J. Environ. Res. Public Health 2020, 17, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent advances in anodes for microbial fuel cells: An overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Khatoon, A.; Setapar, S.H.M.; Umar, K.; Parveen, T.; Ibrahim, M.N.M.; Ahmad, A.; Rafatullah, M. Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts 2020, 10, 819. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K.; Bhawani, S.A.; Khan, A.; Asiri, A.M.; Khan, M.R.; Azam, M.; AlAmmari, A.M. Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells. Polymers 2021, 13, 135. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Yaakop, A.S.; Umar, K.; Ahmad, A. Modified graphene oxide anode: A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells. Chem. Eng. J. 2021, 417, 128052. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Liu, B.; Luan, H.; Vadas, T.; Guo, W.; Ding, J.; Li, B.K. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system. Bioresour. Technol. 2015, 192, 238–246. [Google Scholar] [CrossRef]
- Li, Y.; Styczynski, J.; Huang, Y.; Xu, Z.; McCutcheon, J.; Li, B. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). J. Power Sources 2017, 356, 529–538. [Google Scholar] [CrossRef]
- Sun, M.; Sheng, G.P.; Mu, Z.X.; Liu, X.W.; Chen, Y.Z.; Wang, H.L.; Yu, H.Q. Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J. Power Sources 2009, 191, 338–343. [Google Scholar] [CrossRef]
- Huang, J.Y.; Miwornunyuie, N.; Ewusi-Mensah, D.; Koomson, D.A. Assessing the factors influencing the performance of constructed wetland–microbial fuel cell integration. Water Sci. Technol. 2020, 81, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Chezeau, B.; Vial, C. Modeling and Simulation of the Biohydrogen Production Processes. Biohydrogen 2019, 445–483. [Google Scholar] [CrossRef]
- Zuo, Y.; Xing, D.; Regan, J.M.; Logan, B.E. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 2008, 74, 3130–3137. [Google Scholar] [CrossRef] [Green Version]
- Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Qin, B.; Luo, H.; Liu, G.; Zhang, R.; Chen, S.; Hou, Y.; Luo, Y. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour. Technol. 2012, 121, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Angenent, L.T.; Sung, S. Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system. Water Res. 2001, 35, 1739–1747. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Sleutels, T.H.J.A.; Darus, L.; Hamelers, H.V.M.; Buisman, C.J.N. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresour. Technol. 2011, 102, 11172–11726. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Kotrba, P.; Mackova, M.; Macek, T. Microbial Biosorption of Metals—General Introduction. In Microbial Biosorption of Metals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Dodbiba, G.; Ponou, J.; Fujita, T. Biosorption of heavy metals. In Microbiology for Minerals, Metals, Materials and the Environment; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Colantonio, N. Heavy Metal Removal from Wastewater Using Microbial Electrolysis Cells. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2016. [Google Scholar]
- Colantonio, N.; Kim, Y. Cadmium (II) removal mechanisms in microbial electrolysis cells. J. Hazard. Mater. 2016, 311, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Hasany, M.; Mardanpour, M.M.; Yaghmaei, S. Biocatalysts in microbial electrolysis cells: A review. Int. J. Hydrogen Energy 2016, 41, 1477–1493. [Google Scholar] [CrossRef]
- Kumar, A.; Siggins, A.; Katuri, K.; Mahony, T.; O’Flaherty, V.; Lens, P.; Leech, D. Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chem. Eng. J. 2013, 230, 532–536. [Google Scholar] [CrossRef]
- Torres, C.I.; Krajmalnik-Brown, R.; Parameswaran, P.; Marcus, A.K.; Wanger, G.; Gorby, Y.A.; Rittmann, B.E. Selecting anode-respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization. Environ. Sci. Technol. 2009, 43, 9519–9524. [Google Scholar] [CrossRef]
- Aelterman, P.; Freguia, S.; Keller, J.; Verstraete, W.; Rabaey, K. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Selembo, P.A.; Perez, J.M.; Lloyd, W.A.; Logan, B.E. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy 2009, 34, 5373–5381. [Google Scholar] [CrossRef]
- Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B.E. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Technol. 2012, 106, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Jenkins, P.E.; Ren, Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 2011, 45, 340–344. [Google Scholar] [CrossRef]
Systems | COD Removal Efficiency (%) | Cathode Potential (mV) | Anode Potential (mV) | Maximum Current Density at 10 Ω (mA/m2) | Maximum Power Density at 10 Ω (mW/m2) | Desalination in MDC (NH4Cl) (%) | CE (%) |
---|---|---|---|---|---|---|---|
SCMEC | 30.54 | −549 | −224.3 | 17.995 | 14.216 | 18.34 | 1.21 |
DCMEC | 29.45 | −120.9 | −256.3 | 33.599 | 49.559 | 29.09 | 2.7 |
Control 1 (Abiotic SCMEC) | - | −425.7 | 215.7 | - | - | - | - |
Control 2 (SCMEC) | 16.91 | 129.5 | −79.7 | - | - | - | - |
Control 3 (DCMEC) | 24.05 | 137.5 | −211.9 | - | - | - | - |
Systems | COD Removal Efficiency (%) within 48 h | Anode Potential (mV) | Maximum Voltage Output (mV) | Reference |
---|---|---|---|---|
MDCF | 73.28 | −276.6 | 627 | Experiment |
Control 1 (MDC) | 68.28 | −257.7 | 505 | Experiment |
MDC-MEC | 62.9 | - | 370 | [23] |
MFC-MEC | - | - | 504 | [24] |
MFC-MEC | - | - | 400 | [22] |
Systems | Initial pH | Final pH | Initial Conductivity (mS/cm) | Final Conductivity (mS/cm) |
---|---|---|---|---|
SCMEC | 7.52 | 7.47 | 15.62 | 16.35 |
DCMEC (AC) | 7.04 | 7.02 | 16.09 | 17.02 |
DCMEC (CC) | 7.08 | 6.97 | 13.09 | 13.41 |
MDC (NH4Cl) | 5.83 | 7.08 | 9.37 | 8 |
Abiotic SCMEC Control 1 | 7.47 | 7.08 | 14.82 | 14.12 |
SCMEC Control 2 | 7.38 | 7.26 | 14.94 | 15.8 |
DCMEC (AC) Control 3 | 7.48 | 7.39 | 14.7 | 14.86 |
DCMEC (CC) Control 3 | 7.61 | 7.17 | 12.01 | 12.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koomson, D.A.; Huang, J.; Li, G.; Miwornunyuie, N.; Ewusi-Mensah, D.; Darkwah, W.K.; Opoku, P.A. Comparative Studies of Recirculatory Microbial Desalination Cell–Microbial Electrolysis Cell Coupled Systems. Membranes 2021, 11, 661. https://doi.org/10.3390/membranes11090661
Koomson DA, Huang J, Li G, Miwornunyuie N, Ewusi-Mensah D, Darkwah WK, Opoku PA. Comparative Studies of Recirculatory Microbial Desalination Cell–Microbial Electrolysis Cell Coupled Systems. Membranes. 2021; 11(9):661. https://doi.org/10.3390/membranes11090661
Chicago/Turabian StyleKoomson, Desmond Ato, Jingyu Huang, Guang Li, Nicholas Miwornunyuie, David Ewusi-Mensah, Williams Kweku Darkwah, and Prince Atta Opoku. 2021. "Comparative Studies of Recirculatory Microbial Desalination Cell–Microbial Electrolysis Cell Coupled Systems" Membranes 11, no. 9: 661. https://doi.org/10.3390/membranes11090661
APA StyleKoomson, D. A., Huang, J., Li, G., Miwornunyuie, N., Ewusi-Mensah, D., Darkwah, W. K., & Opoku, P. A. (2021). Comparative Studies of Recirculatory Microbial Desalination Cell–Microbial Electrolysis Cell Coupled Systems. Membranes, 11(9), 661. https://doi.org/10.3390/membranes11090661