Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. State Diagram of Membrane Interface at Constant Area
2.3. Protonation Transition of Membrane Interface
2.4. Membrane Response upon Injection of Acetylcholine (ACh)
2.5. Adsorption of AChE to the Gas-Solution Interface
3. Results and Discussion
3.1. Catalytic Hydrolysis of ACh Triggers Membrane Response
3.2. Membrane Response Is Due to Lipid Headgroup Protonation
Implications for the Cholinergic Synapse
3.3. pH Sensitivity of the Postsynaptic Membrane
3.3.1. Protonation Transitions of Lipids
3.3.2. The AChR-Lipid Interface as a Proton Receptor
- (i)
- anionic lipids assemble around AChR,
- (ii)
- AChR does not function as a receptor for ACh in absence of anionic lipids,
- (iii)
- cell membranes containing AChR have a pK in vicinity of , and
- (iv)
- cells containing AChR-like molecules are excited by protons
“completely lacks the ability to activate the characteristic cation-channel in response to the presence of cholinergic agonists”.[47]
3.4. Acidification Pulse in the Synapse
Material | Mole Fraction | Area Fraction | Molecules [m] |
---|---|---|---|
phospholipids | 1.3 | ||
PS | |||
PA | |||
PIP | |||
cholesterol | |||
AChR | |||
AChR | ∼10 |
3.5. Postsynaptic Excitation by Protonation-Hypothesis and Testable Predictions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nachmansohn, D. Chemical and Molecular Basis of Nerve Activity; Academic Press: New York, NY, USA; London, UK, 1959. [Google Scholar]
- Loewi, O. The Chemical Transmission of Nerve Action (Nobel Lecture); Elsevier Publishing Company: Amsterdam, The Netherlands, 1936. [Google Scholar]
- Miledi, R.; Molinoff, P.; Potter, L. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 1971, 229, 554–557. [Google Scholar] [CrossRef]
- Chang, C.; Lee, C. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 1963, 144, 241–257. [Google Scholar]
- Changeux, J.; Kasai, M.; Lee, C. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. USA 1970, 67, 1241–1247. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.; Meunier, J.; Changeux, J. Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 1972, 28, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, A.; Tarrab-Hazdai, R.; Silman, I.; Fuchs, S. Immunochemical studies on acetylcholine receptor from Torpedo californica. Immunochemistry 1977, 14, 129–137. [Google Scholar] [CrossRef]
- Schiebler, W.; Hucho, F. Membranes Rich in Acetylcholine Receptor: Characterization and Reconstitution to Excitable Membranes from Exogenous Lipids. Eur. J. Biochem. 1978, 85, 55–63. [Google Scholar] [CrossRef]
- Anholt, R.; Fredkin, D.; Deerinck, T.; Ellisman, M.; Montal, M.; Lindstrom, J. Incorporation of acetylcholine receptors into liposomes. Vesicle structure and acetylcholine receptor function. J. Biol. Chem. 1982, 257, 7122–7134. [Google Scholar] [CrossRef]
- Mishina, M.; Kurosaki, T.; Tobimatsu, T.; Morimoto, Y.; Noda, M.; Yamamoto, T.; Terao, M.; Lindstrom, J.; Takahashi, T.; Kuno, M.; et al. Expression of functional acetylcholine receptor from cloned cDNAs. Nature 1984, 307, 604–608. [Google Scholar] [CrossRef]
- Kaufmann, K. Acetylcholinesterase und die Physikalischen Grundlagen der Nervenerregung (Habilitation thesis); GER: Göttingen, Germany, 1980. [Google Scholar]
- Kaufmann, K.; Silman, I. The induction of ion channels through excitable membranes by acetylcholinesterase. Naturwissenschaften 1980, 67, 608–610. [Google Scholar] [CrossRef]
- Kaufmann, K. Inseparability of acetylcholinesterase and nerve excitation. Neurochem. Int. 1980, 2, 111–112. [Google Scholar] [CrossRef]
- Kaufmann, K. Lipid mechanisms and acetylcholinesterase function. In Molecular Basis of Nerve Activity; Changeux, J.P., Hucho, F., Mälicke, A., Neumann, E., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1985; pp. 765–778. [Google Scholar]
- Kaufmann, K.; Silman, I. The induction by protons of ion channels through lipid bilayer membranes. Biophys. Chem. 1983, 18, 89–99. [Google Scholar] [CrossRef]
- Fillafer, C.; Schneider, M. On the excitation of action potentials by protons and its potential implications for cholinergic transmission. Protoplasma 2016, 253, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Varming, T. Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology 1999, 38, 1875–1881. [Google Scholar] [CrossRef]
- Ueno, S.; Nakaye, T.; Akaike, N. Proton-induced sodium current in freshly dissociated hypothalamic neurones of the rat. J. Physiol. 1992, 447, 309–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishtal, O.; Pidoplichko, V. A receptor for protons in the nerve cell membrane. Neuroscience 1980, 5, 2325–2327. [Google Scholar] [CrossRef]
- Fichtl, B.; Shrivastava, S.; Schneider, M. Protons at the speed of sound: Predicting specific biological signaling from physics. Sci. Rep. 2016, 6, 22874. [Google Scholar] [CrossRef]
- Fillafer, C.; Paeger, A.; Schneider, M. The living state: How cellular excitability is controlled by the thermodynamic state of the membrane. Prog. Biophys. Mol. Biol. 2021, 162, 57–68. [Google Scholar] [CrossRef]
- Hauser, H.; Phillips, M.C.; Marchbanks, R.M. Physical studies of the interactions of acetylcholine chloride with membrane constituents. Biochem. J. 1970, 120, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Dziri, L.; Boussaad, S.; Tao, N.; Leblanc, R. Effect of pH on acetylcholinesterase Langmuir and Langmuir-Blodgett films studied by surface potential and atomic force microscopy. Thin Solid Film. 1998, 327-329, 56–59. [Google Scholar] [CrossRef]
- Silman, I.; Karlin, A. Effect of local pH changes caused by substrate hydrolysis on the activity of membrane-bound acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1967, 58, 1664–1668. [Google Scholar] [CrossRef] [Green Version]
- Jencks, W.; Gilchrist, M. The Free Energies of Hydrolysis of Some Esters and Thiol Esters of Acetic Acid. J. Am. Chem. Soc. 1964, 86, 4651–4654. [Google Scholar] [CrossRef]
- MacDonald, R.; Simon, S.; Baer, E. Ionic Influences on the Phase Transition of Dipalmitoylphosphatidylserine. Biochemistry 1976, 15, 885–891. [Google Scholar] [CrossRef]
- Cevc, G.; Watts, A.; Marsh, D. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry 1981, 20, 4955–4965. [Google Scholar] [CrossRef]
- Tsui, F.; Ojcius, D.; Hubbell, W. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 1986, 49, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ros, J.; Llanillo, M.; Paraschos, A.; Martinez-Carrion, M. Lipid Environment of Acetylcholine Receptor from Torpedo californica. Biochemistry 1982, 21, 3467–3474. [Google Scholar] [CrossRef] [PubMed]
- Popot, J.L.; Demel, R.; Sobel, A.; van Deenen, L.; Changeux, J.P. Interaction of the Acetylcholine (Nicotinic) Receptor Protein from Torpedo marmorata Electric Organ with Monolayers of Pure Lipids. Eur. J. Biochem. 1978, 85, 27–42. [Google Scholar] [CrossRef]
- Rotstein, N.; Arias, H.; Barrantes, F.; Aveldaño, M. Composition of Lipids in Elasmobranch Electric Organ and Acetylcholine Receptor Membranes. J. Neurochem. 1987, 49, 1333–1340. [Google Scholar] [CrossRef]
- Träuble, H.; Eibl, H. Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment. Proc. Natl. Acad. Sci. USA 1974, 71, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.; Poile, T. Direct determination by 2H-NMR of the ionization state of phospholipids and of a local anaesthetic at the membrane surface. BBA-Biomembr. 1986, 861, 368–372. [Google Scholar] [CrossRef]
- van Dijck, P.; de Kruijff, B.; Verkleij, A.; van Deenen, L.; de Gier, J. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. BBA-Biomembr. 1978, 512, 84–96. [Google Scholar] [CrossRef]
- Kooijman, E.; King, K.; Gangoda, M.; Gericke, A. Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes. Biochemistry 2009, 48, 9360–9371. [Google Scholar] [CrossRef]
- van Paridon, P.; de Kruijff, B.; Ouwerkerk, R.; Wirtz, K. Polyphosphoinositides undergo charge neutralization in the physiological pH range: A 31P-NMR study. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1986, 877, 216–219. [Google Scholar] [CrossRef]
- Abramson, M.; Colacicco, G.; Curci, R.; Rapport, M. Ionic Properties of Acidic Lipids. Phosphatidylinositol. Biochemistry 1968, 7, 1692–1698. [Google Scholar] [CrossRef]
- Olofsson, G.; Sparr, E. Ionization Constants pKa of Cardiolipin. PLoS ONE 2013, 8, e73040. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.; Swim, L.; Graber, Z.; Tyurina, Y.; Bayir, H.; Kagan, V. Magic angle spinning 31P NMR spectroscopy reveals two essentially identical ionization states for the cardiolipin phosphates in phospholipid liposomes. Biochim. Biophys. Acta-Biomembr. 2017, 1859, 61–68. [Google Scholar] [CrossRef]
- Sturgeon, R.; Baenziger, J. Cations mediate interactions between the nicotinic acetylcholine receptor and anionic lipids. Biophys. J. 2010, 98, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.; Carter, K.; Van Laar, E.; Chupin, V.; Burger, K.; De Kruijff, B. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special? Biochemistry 2005, 44, 17007–17015. [Google Scholar] [CrossRef]
- Gutman, M.; Nachliel, E. The dynamic aspects of proton transfer processes. BBA-Bioenerg. 1990, 1015, 391–414. [Google Scholar] [CrossRef]
- Bhushan, A.; McNamee, M. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid. Biophys. J. 1993, 64, 716–723. [Google Scholar] [CrossRef] [Green Version]
- Mantipragada, S.; Horváth, L.; Arias, H.; Schwarzmann, G.; Sandhoff, K.; Barrantes, F.; Marsh, D. Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Biochemistry 2003, 42, 9167–9175. [Google Scholar] [CrossRef] [PubMed]
- Ellena, J.; Blazing, M.; McNamee, M. Lipid-Protein Interactions in Reconstituted Membranes Containing Acetylcholine Receptor. Biochemistry 1983, 22, 5523–5535. [Google Scholar] [CrossRef]
- Dreger, M.; Krauss, M.; Herrmann, A.; Hucho, F. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry 1997, 36, 839–847. [Google Scholar] [CrossRef]
- Fernández-Carvajal, A.; Encinar, J.; Poveda, J.; De Juan, E.; Martínez-Pinna, J.; Ivorra, I.; Ferragut, J.; Morales, A.; González-Ros, J. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids. J. Mol. Neurosci. 2006, 30, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Fong, T.; McNamee, M. Correlation between Acetylcholine Receptor Function and Structural Properties of Membranes. Biochemistry 1986, 25, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, A.; Sanghvi, M.; Sauls, D.; Machu, T.; Blanton, M. Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 2006, 45, 4327–4337. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, E.; Dalziel, A.; McNamee, M. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. BBA-Biomembr. 1983, 727, 151–162. [Google Scholar] [CrossRef]
- Barrantes, F. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Rev. 2004, 47, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Kalies, I.; Heinz, F.; Hohlfeld, R.; Wekerle, H.; Birnberger, K.L.; Kalden, J.R. Physiochemical and immunological properties of acetylcholine receptors from human muscle. Mol. Cell. Biochem. 1984, 64, 69–79. [Google Scholar] [CrossRef]
- Chang, H.W.; Neumann, E. Dynamic properties of isolated acetylcholine receptor proteins: Release of calcium ions caused by acetylcholine binding. Proc. Natl. Acad. Sci. USA 1976, 73, 3364–3368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma, A.; Li, L.; Chen, X.; Pappone, P.; McNamee, M. Effects of pH on acetylcholine receptor function. J. Membr. Biol. 1991, 120, 67–73. [Google Scholar] [CrossRef]
- Li, L.; McNamee, M. Modulation of nicotinic acetylcholine receptor channel by pH: A difference in pH sensitivity of Torpedo and mouse receptors expressed in Xenopus oocytes. Cell. Mol. Neurobiol. 1992, 12, 83–93. [Google Scholar] [CrossRef]
- Landau, E.; Gavish, B.; Nachshen, D.; Lotan, I. pH dependence of the acetylcholine receptor channel: A species variation. J. Gen. Physiol. 1981, 77, 647–666. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, N.; Prado de Carvalho, L.; Cartaud, J.; Neyton, J.; Le Poupon, C.; Taly, A.; Grutter, T.; Changeux, J.P.; Corringer, P.J. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 2007, 445, 116–119. [Google Scholar] [CrossRef]
- Kuffler, S.; Yoshikami, D. The number of transmitter molecules in a quantum: An estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 1975, 251, 465–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, L. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J. Physiol. 1970, 206, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Jensen-Holm, J. The Cholinesterase Activity, alone and in the Presence of Inhibitors, at low Substrate Concentrations. Acta Pharmacol. Toxicol. 1961, 18, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Bartels, E. Reactions of acetylcholine receptor and esterase studied on the electroplax. Biochem. Pharmacol. 1968, 17, 945–956. [Google Scholar] [CrossRef]
- Salpeter, M.; Eldefrawi, M. Sizes of end plate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular transmission. J. Histochem. Cytochem. 1973, 21, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Edholm, O.; Nagle, J. Areas of molecules in membranes consisting of mixtures. Biophys. J. 2005, 89, 1827–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unwin, N. Segregation of lipids near acetylcholine-receptor channels imaged by cryo-EM. IUCrJ 2017, 4, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Heuser, J.; Salpeter, S. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol. 1979, 82, 150–173. [Google Scholar] [CrossRef]
- Devries, S. Exocytosed Protons Feedback to Suppress the Ca Current in Mammalian Cone Photoreceptors. Neuron 2001, 32, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Chesler, M. Regulation and Modulation of pH in the Brain. Physiol. Rev. 2015, 83, 1183–1221. [Google Scholar] [CrossRef]
- Gutman, M.; Nachliel, E.; Tsfadia, Y. Propagation of protons at the water membrane interface microscopic evaluation of a macroscopic process. In Permeability and Stability of Lipid Bilayers; CRC Press Inc.: Boca Raton, FL, USA, 1995; pp. 259–276. [Google Scholar]
- Paula, S.; Volkov, A.; Van Hoek, A.; Haines, T.; Deamer, D. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 1996, 70, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Pahari, S.; Sun, L.; Alexov, E. PKAD: A database of experimentally measured pKa values of ionizable groups in proteins. Database 2019, 2019, baz024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, K.; Silman, I. Proton-induced ion channels through lipid bilayer membranes. Naturwissenschaften 1983, 70, 147–149. [Google Scholar] [CrossRef]
- Seeger, H.; Aldrovandi, L.; Alessandrini, A.; Facci, P. Changes in single K(+) channel behavior induced by a lipid phase transition. Biophys. J. 2010, 99, 3675–3683. [Google Scholar] [CrossRef] [Green Version]
- Wunderlich, B.; Leirer, C.; Idzko, A.; Keyser, U.; Wixforth, A.; Myles, V.; Heimburg, T.; Schneider, M. Phase-state dependent current fluctuations in pure lipid membranes. Biophys. J. 2009, 96, 4592–4597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, V.; Petrov, V.; Molnar, A.; Predvoditelev, D.; Ivanon, A. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature 1980, 283, 585–586. [Google Scholar] [CrossRef]
- Aidley, D. The Physiology of Excitable Cells, 4th ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Schneider, M. Living systems approached from physical principles. Prog. Biophys. Mol. Biol. 2021, 162, 2–25. [Google Scholar] [CrossRef]
- Katz, B. The Croonian Lecture: The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. R. Soc. Lond. Ser. B 1962, 155, 455–477. [Google Scholar]
- Young, H.; Herbette, L.; Skita, V. α-Bungarotoxin binding to acetylcholine receptor membranes studied by low angle X-ray diffraction. Biophys. J. 2003, 85, 943–953. [Google Scholar] [CrossRef] [Green Version]
Material | Content | Ionization Constant(s) | ||
---|---|---|---|---|
[mol%] | ||||
phosphatidylcholine (PC) | 38–46 | ∼1 | ||
ethanolamine phosphoglyceride (EPG) | 31–43 | ∼3 | 9.6–10.1 | |
phosphatidylserine (PS) | 11–16 | 0.5–2.6 | 3.9–5.4 | 9.8–11.6 |
sphingomyelin (SM) and lyso-PC | 1.5–7 | |||
phosphatidylinositol (PI) | n.d.–4 | 6.5–7.7 | ||
cardiolipin (CL) | n.d.–3 | 2–2.5 | 2.5–3 | |
phosphatidic acid (PA) | n.d.–2.5 | 3–4 | 6.5–8.7 | |
PL/cholesterol [mol/mol] | ≈1.6 | |||
PL/protein [mol/mol] | ≈130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fillafer, C.; Koll, Y.S.; Schneider, M.F. Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission. Membranes 2022, 12, 5. https://doi.org/10.3390/membranes12010005
Fillafer C, Koll YS, Schneider MF. Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission. Membranes. 2022; 12(1):5. https://doi.org/10.3390/membranes12010005
Chicago/Turabian StyleFillafer, Christian, Yana S. Koll, and Matthias F. Schneider. 2022. "Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission" Membranes 12, no. 1: 5. https://doi.org/10.3390/membranes12010005
APA StyleFillafer, C., Koll, Y. S., & Schneider, M. F. (2022). Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission. Membranes, 12(1), 5. https://doi.org/10.3390/membranes12010005