Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Analytical Methods
2.2. Pervaporation Membranes
2.3. Pervaporation Apparatus and Procedure
- Binary mixture: 10 wt. % water and 90 wt. % ethanol.
- Ternary mixtures: One with ester, water, and alcohol (17.7 wt. % ethyl lactate, 10 wt. % water and 72.3 wt. % ethanol) and another with acid, water, and alcohol (13.5 wt. % lactic acid, 10 wt. % water and 76.5 wt. % ethanol). There is no lactic acid + ethyl lactate + ethanol mixture because ethanol and lactic acid were used from commercial aqueous solutions, as described in Section 2.1.
- Quaternary mixture: 13.5 wt. % lactic acid, 17.7 wt. % ethyl lactate, 10 wt. % water and 58.8 wt. % ethanol.
3. Results
3.1. Membrane Selection
- Above 2 wt. %: The fluxes for all feed components increased linearly as the water concentration in the feed increased (Figure 2). There was an order of magnitude difference between water and ethanol fluxes, and almost another order of magnitude between ethanol and both ethyl lactate and lactic acid fluxes, respectively. Selectivity of water/ethanol and ethyl lactate/ethanol (Figure 3) was constant.
- Below 2 wt. %: Water concentration in the permeate dropped exponentially when water content in the feed decreased below 2 wt. %. PERVAP™ 2216 fluxes could be considered negligible, even before reaching 2 wt. % (Figure 1 and Figure 2a). PERVAP™ 1131 showed a constant ethanol and ethyl lactate fluxes, while lactic acid flux decreased dramatically like water flux (Figure 2b). There was, however, significant scattering below 2 wt. %. Finally, PERVAP™ 3100 also showed a sharp decrease in the selectivity of water/ethanol and water/ethyl lactate as the water feed content was low.
3.2. PERVAP™ 1131 Membrane Characterization
3.3. Degree of Swelling
3.4. Temperature Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Lactic Acid | Ethanol | Water | Ethyl Lactate |
---|---|---|---|---|
k1 | 225.19 | 73.304 | 73.469 | 78.774 |
k2 | −18757 | −7122.3 | −7258.9 | −6715.3 |
k3 | −28.816 | −7.1424 | −7.3037 | −9.5666 |
k4 | 1.3 × 10−5 | 2.89 × 10−6 | 4.17 × 10−6 | 0.014993 |
k5 | 2 | 2 | 2 | 1 |
Tmin | 289.9 | 159.05 | 273.16 | 247.15 |
Tmax | 675 | 514 | 647.13 | 588 |
Parameter | Lactic Acid | Ethanol | Water | Ethyl Lactate |
---|---|---|---|---|
ri | 3.1648 | 2.1055 | 0.92 | 4.4555 |
qi | 2.88 | 1.972 | 1.4 | 3.928 |
aij | Lactic Acid | Ethanol | Water | Ethyl Lactate |
Lactic acid | -- | −43.32 | 155.18 | 125.29 |
Ethanol | 191.28 | -- | 728.97 | −148.67 |
Water | −39.61 | −756.95 | -- | 64.53 |
Ethyl lactate | 52.64 | 341.77 | 99.8 | -- |
bij | Lactic acid | Ethanol | Water | Ethyl lactate |
Lactic acid | -- | 0 | 0 | 0 |
Ethanol | 0 | -- | −2.0046 | 0 |
Water | 0 | 2.4936 | -- | 0 |
Ethyl lactate | 0 | 0 | 0 | -- |
References
- Sanz, M.A.; Luque, S.; Berrueta, J.; Coca, J. Ésteres de ácido láctico. Ing. Quim. 2002, 395, 51–56. [Google Scholar]
- de la Iglesia, Ó.; Mallada, R.; Menéndez, M.; Coronas, J. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chem. Eng. J. 2007, 131, 35–39. [Google Scholar] [CrossRef]
- Yahya, A.R.M.; Anderson, W.A.; Moo-Young, M. Ester synthesis in lipase-catalyzed reactions. Enzyme Microb. Technol. 1998, 23, 438–450. [Google Scholar] [CrossRef]
- Wasewar, K.; Patidar, S.; Agarwal, V.K. Esterification of lactic acid with ethanol in a pervaporation reactor: Modeling and performance study. Desalination 2009, 243, 305–313. [Google Scholar] [CrossRef]
- Benedict, D.J.; Parulekar, S.J.; Tsai, S.-P. Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery. J. Membr. Sci. 2006, 281, 435–445. [Google Scholar] [CrossRef]
- Lipnizki, F.; Field, R.W.; Ten, P.-K. Pervaporation-based hybrid process: A review of process design, applications and economics. J. Membr. Sci. 1999, 153, 183–210. [Google Scholar] [CrossRef]
- Smitha, B.; Suhanya, D.; Sridhar, S.; Ramakrishna, M. Separation of organic–organic mixtures by pervaporation—A review. J. Membr. Sci. 2004, 241, 1–21. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, H.; Lee, S.-B.; Lee, Y. Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination 2006, 193, 244–251. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Yang, W. Formation mechanism of microwave synthesized LTA zeolite membranes. J. Membr. Sci. 2006, 281, 646–657. [Google Scholar] [CrossRef]
- Li, X.; Kita, H.; Zhu, H.; Zhang, Z.; Tanaka, K. Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions. J. Membr. Sci. 2009, 339, 224–232. [Google Scholar] [CrossRef]
- Kita, H.; Tanaka, K.; Okamoto, K.; Yamamoto, M. The esterification of oleic acid with ethanol accompanied by membrane separation. Chem. Lett. 1987, 16, 2053–2056. [Google Scholar] [CrossRef]
- David, M.O.; Graf, R.; Nguyen, T.Q.; Neel, J. Pervaporation—Esterification coupling: Part I. Basic kinetic model. Trans. IchemE. 1991, 69, 335–340. [Google Scholar]
- David, M.O.; Graf, R.; Nguyen, T.Q.; Neel, J. Pervaporation—Esterification coupling: Part II. Modelling of the influence of different operating parameters. Trans. IchemE. 1991, 69, 341–346. [Google Scholar]
- Bagnell, L.; Cavell, K.; Hodges, A.M.; Mau, A.W.H.; Seen, A.J. The use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux. J. Membr. Sci. 1993, 85, 291–299. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H. Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate. J. Membr. Sci. 1998, 138, 123–134. [Google Scholar]
- Xuehui, L.; Lefu, W. Kinetic model for an esterification process coupled by pervaporation. J. Membr. Sci. 2001, 186, 19–24. [Google Scholar] [CrossRef]
- Liu, Q.L.; Chen, H.F. Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation. J. Membr. Sci. 2002, 196, 171–178. [Google Scholar] [CrossRef]
- Peters, T.A.; Benes, N.E.; Keurentjes, J.T.F. Zeolite-coated ceramic pervaporation membranes; pervaporation−esterification coupling and reactor evaluation. Ind. Eng. Chem. Res. 2005, 44, 9490–9496. [Google Scholar] [CrossRef]
- Qing, W.; Wu, J.; Chen, N.; Liu, L.; Deng, Y.; Zhang, W. A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor. Chem. Eng. J. 2017, 323, 434–443. [Google Scholar] [CrossRef]
- Zhang, W.; Qing, W.; Chen, N.; Ren, Z.; Chen, J.; Sun, W. Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes. J. Membr. Sci. 2014, 451, 285–292. [Google Scholar] [CrossRef]
- Benedict, D.J.; Parulekar, S.J.; Tsai, S.-P. Esterification of lactic acid and ethanol with/without pervaporation. Ind. Eng. Chem. Res. 2003, 42, 2282–2291. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.; Lu, L.; Yin, X.; Chen, J.; Jiang, Z. Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan–TEOS hybrid membranes. Chem. Eng. J. 2009, 155, 800–809. [Google Scholar] [CrossRef]
- Delgado, P.; Sanz, M.T.; Beltrán, S.; Núñez, L.A. Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chem. Eng. J. 2010, 165, 693–700. [Google Scholar] [CrossRef]
- Pereira, C.S.M.; Silva, V.M.T.M.; Pinho, S.P.; Rodrigues, A.E. Batch and continuous studies for ethyl lactate synthesis in a pervaporation membrane reactor. J. Membr. Sci. 2010, 361, 43–55. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, L.; Jiang, Z.; Ma, J. Effects of dehydration rate on the yield of ethyl lactate in a pervaporation-assisted esterification process. Ind. Eng. Chem. Res. 2015, 54, 6669–6676. [Google Scholar] [CrossRef]
- Budd, P.M.; Ricardo, N.M.P.S.; Jafar, J.J.; Stephenson, B.; Hughes, R. Zeolite/polyelectrolyte multilayer pervaporation membranes for enhanced reaction yield. Ind. Eng. Chem. Res. 2004, 43, 1863–1867. [Google Scholar] [CrossRef]
- Izák, P.; Mateus, N.M.M.; Afonso, C.A.M.; Crespo, J.G. Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation. Sep. Purif. Technol. 2005, 41, 141–145. [Google Scholar] [CrossRef]
- Assabumrungrat, S.; Phongpatthanapanich, J.; Praserthdam, P.; Tagawa, T.; Goto, S. Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: Effect of continuous-flow modes. Chem. Eng. J. 2003, 95, 57–65. [Google Scholar] [CrossRef]
- Sanz, M.T.; Gmehling, J. Esterification of acetic acid with isopropanol coupled with pervaporation: Part I: Kinetics and pervaporation studies. Chem. Eng. J. 2006, 123, 1–8. [Google Scholar] [CrossRef]
- Sanz, M.T.; Gmehling, J. Esterification of acetic acid with isopropanol coupled with pervaporation: Part II. Study of a pervaporation reactor. Chem. Eng. J. 2006, 123, 9–14. [Google Scholar] [CrossRef]
- Delgado, P.; Sanz, M.T.; Beltrán, S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol. J. Membr. Sci. 2009, 332, 113–120. [Google Scholar] [CrossRef]
- Yave, W. The improved pervaporation PERVAP membranes. Filtr. Sep. 2017, 54, 14–15. [Google Scholar] [CrossRef]
- Kujawski, J.K.; Kujawski, W.M.; Sondej, H.; Jarzynka, K.; Kujawska, A.; Bryjak, M.; Rynkowska, E.; Knozowska, K.; Kujawa, J. bDewatering of 2,2,3,3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly(vinyl alcohol) based Pervap™ membranes. Sep. Purif. Technol. 2017, 174, 520–528. [Google Scholar] [CrossRef]
- Lipnizki, F.; Hausmanns, S. Hydrophobic Pervaporation of Binary and Ternary Solutions: Evaluation of Fluxes, Selectivities, and Coupling Effects. Sep. Sci. Technol. 2005, 39, 2235–2259. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. A simple predictive treatment of the permeation process in pervaporation. J. Membr. Sci. 1993, 79, 101–113. [Google Scholar] [CrossRef]
- Delgado, P.; Sanz, M.T.; Beltrán, S. Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol+water+ethyl lactate+lactic acid at 101.33kPa. Fluid Phase Equilib. 2007, 255, 17–23. [Google Scholar] [CrossRef]
- Clément, R.; Bendjama, Z.; Nguyen, Q.T.; Néel, J. Extraction of organics from aqueous solutions by pervaporation. A novel method for membrane characterization and process design in ethyl acetate separation. J. Membr. Sci. 1992, 66, 193–203. [Google Scholar] [CrossRef]
- Kariduraganavar, M.Y.; Kulkarni, S.S.; Kittur, A.A. Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes. J. Membr. Sci. 2005, 246, 83–93. [Google Scholar] [CrossRef]
- Oh, B.-K.; Lee, Y.M. Effects of functional group and operating temperature on the separation of pyridine-water mixture by pervaporation. J. Membr. Sci. 1996, 113, 183–189. [Google Scholar] [CrossRef]
- Upadhyay, D.J.; Bhat, N.V. Pervaporation studies of gaseous plasma treated PVA membrane. J. Membr. Sci. 2004, 239, 255–263. [Google Scholar] [CrossRef]
- Delgado, P.; Sanz, M.T.; Beltrán, S. Pervaporation study for different binary mixtures in the esterification system of lactic acid with ethanol. Sep. Purif. Technol. 2008, 64, 78–87. [Google Scholar] [CrossRef]
Pure Components | Swelling (%) |
---|---|
Ethanol | 1.4 |
Water | 7.0 |
Ethyl lactate | 33 |
Lactic acid | 67 |
Acidic components | |
Ethanol + 0.5 mL H2SO4 | 8.8 |
Water + 0.5 mL H2SO4 | 20 |
Ethyl lactate + 0.5 mL H2SO4 | 60 |
Mixtures | |
10% water in ethanol | 2.9 |
17.7% ethyl lactate + 10% water in ethanol | 1.4 |
13.5% lactic acid + 10% water in ethanol | 12 |
17.7% ethyl lactate + 13.5% lactic acid + 10% water in ethanol | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Díaz, E.; Álvarez-García, S.; Luque, S.; Álvarez, J.R. Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media. Membranes 2022, 12, 96. https://doi.org/10.3390/membranes12010096
González Díaz E, Álvarez-García S, Luque S, Álvarez JR. Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media. Membranes. 2022; 12(1):96. https://doi.org/10.3390/membranes12010096
Chicago/Turabian StyleGonzález Díaz, Elena, Sonia Álvarez-García, Susana Luque, and José R. Álvarez. 2022. "Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media" Membranes 12, no. 1: 96. https://doi.org/10.3390/membranes12010096
APA StyleGonzález Díaz, E., Álvarez-García, S., Luque, S., & Álvarez, J. R. (2022). Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media. Membranes, 12(1), 96. https://doi.org/10.3390/membranes12010096