Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions
Abstract
:1. Introduction
- ZIF-8/PPS fiber membranes displayed the controllable nano/micro-scale pore structure.
- ZIF-8/PPS fiber membranes exhibited excellent water permeability and oil rejection.
- ZIF-8/PPS fiber membranes showed high-temperature resistance.
- ZIF-8/PPS fiber membranes exhibited excellent cycling performance.
- ZIF-8/PPS fiber membranes possessed excellent chemical durability under harsh conditions.
2. Experimental Procedure
2.1. Materials
2.2. Preparation of PPS Non-Woven Fabrics
2.3. Nitrification Reaction and Hot-Pressing Process
2.4. Preparation of ZIF-8/PPS Fiber Membranes
2.5. Oil/Water Emulsion Separation Experiments
2.6. Instruments and Characterization
3. Results and Discussion
3.1. Basic Properties of PPS Matrix
3.2. Functional Group Analysis
3.3. Element Distribution Characterization
3.4. Membrane Morphology
3.5. Crystallinity Analysis
3.6. Porosity and Roughness Measurements
3.7. Thermogravimetric Analysis
3.8. Wettability of Membrane Surface
3.9. Water Flux and Oil/Water Separation Performance
3.10. Corrosion Resistance Performance and Recycling Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Kang, R.M.; Tang, X.H.; She, H.D.; Yang, Y.X.; Zhang, F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 2016, 8, 7638–7645. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, L.; Zhao, Y.Z.; Zha, F.; Wang, Q.T.; Lei, Z.Q. Correction: One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Phys. Chem. Chem. Phys. 2015, 17, 11112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Jiang, D.Y.; Wei, Z.B.; Chen, J.; Jing, J.F. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil–water separation. Appl. Surf. Sci. 2018, 427, 253–261. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Chen, L.; Feng, Y.; He, W.X.; Yan, X.H.; Lv, X.M. Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation. Surf. Coat. Technol. 2016, 307, 171–176. [Google Scholar] [CrossRef]
- Du, C.; Wang, J.D.; Chen, Z.F.; Chen, D.R. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci. 2014, 313, 304–310. [Google Scholar] [CrossRef]
- Zhu, X.T.; Zhang, Z.Z.; Ge, B.; Men, X.H.; Zhou, X.Y.; Xue, Q.J. A versatile approach to produce superhydrophobic materials used for oil–water separation. J. Colloid Interface Sci. 2014, 432, 105–108. [Google Scholar] [CrossRef]
- Gomaa, H.G.; Rao, S. Analysis of flux enhancement at oscillating flat surface membranes. J. Membr. Sci. 2011, 374, 59–66. [Google Scholar] [CrossRef]
- Lu, J.W.; Li, F.C.; Miao, G.; Miao, X.; Ren, G.N.; Wang, B.; Song, Y.M.; Li, X.M.; Zhu, X.T. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J. Membr. Sci. 2021, 637, 119624. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Ullah, A. The influence of interfacial tension on rejection and permeation of the oil droplets through a slit pore membrane. Sep. Purif. Technol. 2021, 266, 118581. [Google Scholar] [CrossRef]
- Yang, J.; Tang, Y.C.; Xu, J.Q.; Chen, B.B.; Tang, H.; Li, C.S. Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surf. Coat. Technol. 2015, 272, 285–290. [Google Scholar] [CrossRef]
- Li, S.H.; Huang, J.Y.; Ge, M.Z.; Cao, C.Y.; Deng, S.; Zhang, S.N.; Chen, G.Q.; Zhang, K.Q.; Al-Deyab, S.S.; Lai, Y.K. Robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Adv. Mater. Interfaces 2015, 2, 1500220. [Google Scholar] [CrossRef]
- Chen, Y.; He, H.W.; Wu, S.H.; Ning, X.; Chen, F.X.; Lv, Y.R.; Yu, J.; Zhou, R. Mn/Ce oxides decorated polyphenylene sulfide needle-punching fibrous felts for dust removal and denitration application. Polymers 2020, 12, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.Q.; Liu, Z.X.; He, C.C.; Wang, P.; Chen, S.H.; Xu, J.; Wu, J.; Wang, L.X.; Wang, H. Ferrous-oxalate-decorated polyphenylene sulfide fenton catalytic microfiber for methylene blue degradation. Compos. Part B 2019, 176, 107220. [Google Scholar] [CrossRef]
- Ansari, M.Q.; Bortner, M.J.; Baird, D.G. Generation of polyphenylene sulfide reinforced with a thermotropic liquid crystalline polymer for application in fused filament fabrication. Addit. Manuf. 2019, 29, 100814. [Google Scholar] [CrossRef]
- Wang, T.X.; Jiang, Y.M.; Zhou, Y.X.; Du, Y.L.; Wang, C.M. In situ electrodeposition of CoP nanoparticles on carbon nanomaterial doped polyphenylene sulfide flexible electrode for electrochemical hydrogen evolution. Appl. Surf. Sci. 2018, 442, 1–11. [Google Scholar] [CrossRef]
- Lv, Y.R.; He, H.W.; Chen, F.X.; Yu, J.; Ning, X.; Zhou, R. Polyphenylene sulfide (PPS) fibrous felt coated with conductive polyaniline via in situ polymerization for smart high temperature bag-filter. Mater. Res. Express 2019, 6, 075706. [Google Scholar] [CrossRef]
- Zheng, X.X.; Böttger, A.J.; Jansen, K.M.B.; van Turnhout, J.; van Kranendonk, J. Aging of polyphenylene sulfide-glass composite and polysulfone in highly oxidative and strong alkaline environments. Front. Mater. 2020, 7, 610440. [Google Scholar] [CrossRef]
- Lin, P.; Huang, S.; Liu, Q.; Zhao, L.; Huang, H.; Zhu, C.; Yu, Y.; Li, Y.; Zhu, Z.; Nie, K.; et al. Controllable mechanical and conductive performance of polyphenylene sulfide composite with quasi 2D ordered long carbon fiber forests. Compos. Part B 2021, 204, 108484. [Google Scholar] [CrossRef]
- Fan, Y.; Ben, H.J.; Li, L.F.; Meng, S.G.; Zhang, S.J.; Zheng, X.Z.; Zhang, J.F.; Yin, L.C.; Chen, S.F. A novel metal-free photocatalyst polyphenylene sulfide: Synthesis, characterization and performance evaluation. Appl. Catal. B 2020, 274, 119073. [Google Scholar] [CrossRef]
- Batista, N.L.; Anagnostopoulos, K.; Botelho, E.C.; Kim, H. Influence of crystallinity on interlaminar fracture toughness and impact properties of polyphenylene sulfide/carbon fiber laminates. Eng. Fail. Anal. 2021, 119, 104976. [Google Scholar] [CrossRef]
- Ye, C.T.; Chen, X.; Wang, L.L.; Peng, W.; Zhu, W.Q.; Dong, W.P.; Wang, B.; E, S.J.; Li, X.P. Highly enhanced joint strength of direct-injection-moulded polyphenylene sulphide-magnesium composite by PEO coated interface. Surf. Coat. Technol. 2020, 404, 126565. [Google Scholar] [CrossRef]
- Fan, G.H.; Shi, G.Y.; Ren, H.; Liu, Y.; Fan, R.H. Graphene/polyphenylene sulfide composites for tailorable negative permittivity media by plasmonic oscillation. Mater. Lett. 2019, 257, 126683. [Google Scholar] [CrossRef]
- Fitzharris, E.R.; Watt, I.; Rosen, D.W.; Shofner, M.L. Interlayer bonding improvement of material extrusion parts with polyphenylene sulfide using the Taguchi method. Addit. Manuf. 2018, 24, 287–297. [Google Scholar] [CrossRef]
- Yu, Y.; Xiong, S.; Huang, H.; Zhao, L.; Nie, K.; Chen, S.; Xu, J.; Yin, X.; Wang, H.; Wang, L. Fabrication and application of poly(phenylene sulfide) ultrafine fiber. React. Funct. Polym. 2020, 150, 104539. [Google Scholar] [CrossRef]
- Barique, M.A.; Seesukphronrarak, S.; Wu, L.B.; Ohira, A. A comparison between highly crystalline and low crystalline poly (phenylene sulfide) as polymer electrolyte membranes for fuel cells. J. Phys. Chem. B 2011, 115, 27–33. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.H.; Cao, L.; Cheng, B.W. A superhydrophilic and anti-Biofouling polyphenylene sulfide microporous membrane with quaternary ammonium salts. Macromol. Res. 2018, 26, 800–807. [Google Scholar] [CrossRef]
- Gao, Y.; Su, K.M.; Wang, X.T.; Li, Z.H. A metal-nano GO frameworks/PPS membrane with super water flux and high dyes interception. J. Membr. Sci. 2019, 574, 55–64. [Google Scholar] [CrossRef]
- Gao, Y.; Su, K.M.; Li, Z.H.; Cheng, B.W. Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl) ethane. Chem. Eng. J. 2018, 352, 10–19. [Google Scholar] [CrossRef]
- Wang, L.H.; Ding, H.Y.; Shi, Y.Q.; Liu, B.Q. Effect of diluent mixture on porous structure of polyphenylene sulfide via thermally induced phase separation. J. Macromol. Sci. Part A 2009, 46, 1122–1127. [Google Scholar] [CrossRef]
- Ren, G.N.; Song, Y.M.; Li, X.M.; Zhou, Y.L.; Zhang, Z.Z.; Zhu, X.T. A superhydrophobic copper mesh as an advanced platform for oil–water separation. Appl. Surf. Sci. 2018, 428, 520–525. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.Q.; Ou, J.F.; Wang, F.J.; Xue, M.S.; Li, W.; Qiao, G.J.; Guan, X.H.; Zhang, J. Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surf. A 2017, 533, 249–254. [Google Scholar] [CrossRef]
- Huang, H.; Hao, H.; Yu, Q.; Lin, P.; Xu, J.; Yin, X.; Chen, S.; Wang, H.; Wang, L. Flexible and highly efficient bilayer photothermal paper for water desalination and purification: Self-floating, rapid water transport, and localized heat. ACS Appl. Mater. Interfaces 2020, 12, 11204–11213. [Google Scholar] [CrossRef]
- Rozy, M.I.F.; Ito, K.; Une, K.; Fukasawa, T.; Ishigami, T.; Wada, M.; Fukui, K. A continuous-flow exposure method to determine degradation of polyphenylene sulfide non-woven bag-filter media by NO2 gas at high temperature. Adv. Powder Technol. 2019, 30, 2881–2889. [Google Scholar] [CrossRef]
- Tanthapanichakoon, W.; Furuuchi, M.; Nitta, K.H.; Hata, M.; Otani, Y. Degradation of bag-filter non-woven fabrics by nitric oxide at high temperatures. Adv. Powder Technol. 2007, 18, 349–354. [Google Scholar] [CrossRef]
- Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127–1129. [Google Scholar] [CrossRef] [Green Version]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Pan, Y.C.; Liu, Y.Y.; Zeng, G.F.; Zhao, L.; Lai, Z.P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef]
- Wijenayake, S.N.; Panapitiya, N.P.; Versteeg, S.H.; Nguyen, C.N.; Goel, S.; Balkus, K.J.; Musselman, I.H.; Ferraris, J.P. Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Ind. Eng. Chem. Res. 2013, 52, 6991–7001. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.B.; Hu, P.; Peng, X.S. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Appl. Mater. Today 2016, 5, 103–110. [Google Scholar] [CrossRef]
- Wei, Y.B.; Qi, H.; Gong, X.; Zhao, S.F. Specially Wettable Membranes for Oil–Water Separation. Adv. Mater. Interfaces 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Yan, X.; Xiao, X.; Au, C.; Mathur, S.; Huang, L.; Wang, Y.; Zhang, Z.; Zhu, Z.; Kipper, M.J.; Tang, J.; et al. Electrospinning nanofibers and nanomembranes for oil/water separation. J. Mater. Chem. A 2021, 9, 21659–21684. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.H.; Cheng, B.W.; Su, K.M. Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation. Sep. Purif. Technol. 2018, 192, 262–270. [Google Scholar] [CrossRef]
- Chen, T.; Huang, X.B. Modeling polymer air drawing in the melt blowing nonwoven process. Text. Res. J. 2003, 73, 651–654. [Google Scholar] [CrossRef]
- Lu, Q.; He, Y.-B.; Feiyu, K.; Li, B.; Kaneti, Y.; Yao, Y.; Kang, F.; Yang, Q.-H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460. [Google Scholar] [CrossRef]
- Wu, C.R.; Tang, W.Y.; Zhang, J.H.; Liu, S.H.; Wang, Z.Y.; Wang, X.; Lv, X.L. Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion. J. Membr. Sci. 2017, 543, 288–300. [Google Scholar] [CrossRef]
- Kariduraganavar, M.Y.; Varghese, J.G.; Choudhari, S.K.; Olley, R.H. Organic–inorganic hybrid membranes: Solving the trade-off phenomenon between permeation flux and selectivity in pervaporation. Ind. Eng. Chem. Res. 2009, 48, 4002–4013. [Google Scholar] [CrossRef]
- Xu, W.W.L.; Fang, C.; Zhou, F.L.; Song, Z.N.; Liu, Q.L.; Qiao, R.; Yu, M. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 2017, 17, 2928–2933. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, J.H.; Roh, I.J.; Kim, J.J. The changes of membrane performance with polyamide molecular structure in the reverse osmosis process. J. Membr. Sci. 2000, 165, 189–199. [Google Scholar] [CrossRef]
- Guo, H.; Yao, Z.K.; Wang, J.Q.; Yang, Z.; Ma, X.H.; Tang, C.Y.Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. J. Membr. Sci. 2018, 551, 234–242. [Google Scholar] [CrossRef]
- Shangguan, J.H.; Bai, L.; Li, Y.; Zhang, T.; Liu, Z.C.; Zhao, G.Z.; Liu, Y.Q. Layer-by-layer decoration of MOFs on electrospun nanofibers. RSC Adv. 2018, 8, 10509–10515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, T.T.; Su, Y.; Fan, Q.; Li, Z.H.; Cui, W.Y.; Yu, M.; Ning, X.; Ramakrishna, S.; Long, Y.Z. Robust graphene@PPS fibrous membrane for harsh environmental oil/water separation and all-weather cleanup of crude oil spill by joule heat and photothermal effect. ACS Appl. Mater. Interfaces 2021, 13, 19377–19386. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Yu, L.; Cui, X.; Tan, C.; Zhang, M.; Wu, D.; Li, Z.; Zhang, M. Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions. Membranes 2022, 12, 1017. https://doi.org/10.3390/membranes12101017
Liu W, Yu L, Cui X, Tan C, Zhang M, Wu D, Li Z, Zhang M. Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions. Membranes. 2022; 12(10):1017. https://doi.org/10.3390/membranes12101017
Chicago/Turabian StyleLiu, Wenlei, Lingli Yu, Xianfeng Cui, Ce Tan, Mengen Zhang, Di Wu, Zhenhuan Li, and Maliang Zhang. 2022. "Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions" Membranes 12, no. 10: 1017. https://doi.org/10.3390/membranes12101017
APA StyleLiu, W., Yu, L., Cui, X., Tan, C., Zhang, M., Wu, D., Li, Z., & Zhang, M. (2022). Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions. Membranes, 12(10), 1017. https://doi.org/10.3390/membranes12101017