The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes
Abstract
:1. Introduction
2. Experimental Section
2.1. F–Doped and Undoped Sol–Gel Preparations
2.2. Characterization of Sol–Gel
2.3. Fabrication of Organosilica Membranes
2.4. Single–Gas Permeation Measurements
3. Results and Discussion
3.1. Physicochemical Properties of Pendant–Type Organosilica
3.2. Pore Size Controllability of Organosilica Membranes
3.3. The Effect Fluorine Doping Exerts on A Pendant–Type Organosilica Network Structure (C1, C3)
3.4. Network Pore-Size Evaluation of Pendant– and Bridged–Type Organosilica Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.J.; Yang, H.C.; Chung, D.Y.; Yang, I.H.; Choi, Y.J.; Moon, J.K. Functionalized mesoporous silica membranes for CO2 separation applications. J. Chem. 2015, 2015, 202867. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Lee, C.H. Hydrogen separation of methyltriethoxysilane templating silica membrane. AIChE J. 2007, 53, 3125–3136. [Google Scholar] [CrossRef]
- Moon, J.H.; Park, Y.J.; Kim, M.B.; Hyun, S.H.; Lee, C.H. Permeation and separation of a carbon dioxide/nitrogen mixture in a methyltriethoxysilane templating silica/α-alumina composite membrane. J. Membr. Sci. 2005, 250, 195–205. [Google Scholar] [CrossRef]
- Gu, Y.; Oyama, S.T. High molecular permeance in a poreless ceramic membrane. Adv. Mater. 2007, 19, 1636–1640. [Google Scholar] [CrossRef]
- Jia, M.D.; Chen, B.; Noble, R.D.; Falconer, J.L. Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures. J. Membr. Sci. 1994, 90, 1–10. [Google Scholar] [CrossRef]
- Vroon, Z.A.E.P.; Keizer, K.; Gilde, M.J.; Verweij, H.; Burggraaf, A.J. Transport properties of alkanes through ceramic thin zeolite MFI membranes. J. Membr. Sci. 1996, 113, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Krishna, R.; Van den Broeke, L.J.P. The Maxwell-Stefan description of mass transport across zeolite membranes. Chem. Eng. J. Biochem. Eng. J. 1995, 57, 155–162. [Google Scholar] [CrossRef]
- van de Graaf, J.M.; Kapteijn, F.; Moulijn, J.A. Methodological and operational aspects of permeation measurements on silicalite-1 membranes. J. Membr. Sci. 1998, 144, 87–104. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Naik, S.; Braunbarth, C.M.; Cornelius, C.J.; Pardey, R.; Brinker, C.J. Organic-templated silica membranes: I. Gas and vapor transport properties. J. Membr. Sci. 2003, 215, 225–233. [Google Scholar] [CrossRef]
- De Vos, R.M.; Verweij, H. High-selectivity, high-flux silica membranes for gas separation. Science 1998, 279, 1710–1711. [Google Scholar] [CrossRef] [PubMed]
- Ockwig, N.W.; Nenoff, T.M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef] [PubMed]
- Gavalas, G.R.; Megiris, C.E.; Nam, S.W. Deposition of H2-permselective SiO2 films. Chem. Eng. Sci. 1989, 44, 1829–1835. [Google Scholar] [CrossRef]
- Iwamoto, Y. Precursors-derived ceramic membranes for high-temperature separation of hydrogen. J. Ceram. Soc. Jpn. 2007, 115, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Luiten, M.W.J.; Benes, N.E.; Huiskes, C.; Kruidhof, H.; Nijmeijer, A. Robust method for micro-porous silica membrane fabrication. J. Membr. Sci. 2010, 348, 1–5. [Google Scholar] [CrossRef]
- Lee, D.; Zhang, L.; Oyama, S.T.; Niu, S.; Saraf, R.F. Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. J. Membr. Sci. 2004, 231, 117–126. [Google Scholar] [CrossRef]
- Nomura, M.; Seshimo, M.; Aida, H.; Nakatani, K.; Gopalakrishnan, S.; Sugawara, T.; Nakao, S.I. Preparation of a catalyst composite silica membrane reactor for steam reforming reaction by using a counter diffusion CVD method. Ind. Eng. Chem. Res. 2006, 45, 3950–3954. [Google Scholar] [CrossRef]
- Kim, S.; Gavalas, G.R. Preparation of H2 permselective silica membranes by alternating reactant vapor deposition. Ind. Eng. Chem. Res. 1995, 34, 168–176. [Google Scholar] [CrossRef]
- Sea, B.K.; Watanabe, M.; Kusakabe, K.; Morooka, S.; Kim, S.S. Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery from a mixture containing steam. Gas Sep. Purif. 1996, 10, 187–195. [Google Scholar] [CrossRef]
- Guo, M.; Qian, J.; Xu, R.; Ren, X.; Zhong, J.; Kanezashi, M. Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes. J. Membr. Sci. 2022, 643, 120018. [Google Scholar] [CrossRef]
- Kanezashi, M.; Matsutani, T.; Wakihara, T.; Nagasawa, H.; Okubo, T.; Tsuru, T. Preparation and Gas Permeation Properties of Fluorine–Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size. ACS Appl. Mater. Interfaces 2017, 9, 24625–24633. [Google Scholar] [CrossRef] [PubMed]
- Kanezashi, M.; Yoneda, Y.; Nagasawa, H.; Tsuru, T. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. AIChE J. 2017, 63, 4491–4498. [Google Scholar] [CrossRef]
- Campaniello, J.; Engelen, C.W.; Haije, W.G.; Pex, P.P.; Vente, J.F. Long-term pervaporation performance of microporous methylated silica membranes. Chem. Commun. 2004, 834–835. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Kanezashi, M.; Tsuru, T. Preparation of organic–inorganic hybrid silica membranes using organoalkoxysilanes: The effect of pendant groups. J. Membr. Sci. 2011, 379, 287–295. [Google Scholar] [CrossRef]
- Raman, N.K.; Brinker, C.J. Organic “template” approach to molecular sieving silica membranes. J. Membr. Sci. 1995, 105, 273. [Google Scholar] [CrossRef]
- Kanezashi, M.; Matsutani, T.; Wakihara, T.; Tawarayama, H.; Nagasawa, H.; Yoshioka, T.; Tsuru, T. Tailoring the subnano silica structure via fluorine doping for development of highly permeable CO2 separation membranes. ChemNanoMat 2016, 2, 264–267. [Google Scholar] [CrossRef]
- Kanezashi, M.; Murata, M.; Nagasawa, H.; Tsuru, T. Fluorine doping of microporous organosilica membranes for pore size control and enhanced hydrophobic properties. ACS Omega 2018, 3, 8612–8620. [Google Scholar] [CrossRef]
- Rana, I.; Nagasawa, H.; Yamamoto, K.; Gunji, T.; Tsuru, T.; Kanezashi, M. Effect of fluorine doping on the network pore structure of non-porous organosilica bis (triethoxysilyl) propane (BTESP) membranes for use in molecular separation. J. Membr. Sci. 2021, 644, 120083. [Google Scholar] [CrossRef]
- Martens, D.L.; Motuzas, J.; Smart, S.; da Costa, J.C.D. Structural investigation of cobalt oxide seeded silica xerogels under harsh hydrothermal condition. J. Sol-Gel Sci. Technol. 2021, 98, 470–477. [Google Scholar] [CrossRef]
- Smart, S.; Vente, J.F.; da Costa, J.D. High temperature H2/CO2 separation using cobalt oxide silica membranes. Int. J. Hydrogen Energy 2012, 37, 12700–12707. [Google Scholar] [CrossRef] [Green Version]
- Mirza, E.S.; Topuz, B. Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation. Sep. Purif. Technol. 2022, 280, 119801. [Google Scholar] [CrossRef]
- Paradis, G.G.; Shanahan, D.P.; Kreiter, R.; van Veen, H.M.; Castricum, H.L.; Nijmeijer, A.; Vente, J.F. From hydrophilic to hydrophobic HybSiVRmembranes: A change of affinity and applicability. J. Membr. Sci. 2013, 428, 157–162. [Google Scholar] [CrossRef]
- Castricum, H.L.; Sah, A.; Mittelmeijer-Hazeleger, M.C.; Huiskes, C.; Johan, E. Microporous structure and enhanced hydrophobicity in methylated SiO2 for molecular separation. J. Mater. Chem. 2007, 17, 1509–1517. [Google Scholar] [CrossRef]
- Agirre, I.; Arias, P.L.; Castricum, H.L.; Creatore, M.; Johan, E.; Paradis, G.G.; Vente, J.F. Hybrid organosilica membranes and processes: Status and outlook. Sep. Purif. Technol. 2014, 121, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Kanezashi, M.; Kazuya, Y.; Tomohisa, Y.; Toshinori, T. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J. Am. Chem. Soc. 2009, 131, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, M.; Nagasawa, H.; Tsuru, T.; Kanezashi, M. Hydrocarbon permeation properties through microporous fluorine-doped organosilica membranes with controlled pore sizes. J. Membr. Sci. 2021, 619, 118787. [Google Scholar] [CrossRef]
- Rana, I.; Nagasawa, H.; Tsuru, T.; Kanezashi, M. Tailoring the structure of a sub-nano silica network via fluorine doping to enhance CO2 separation and evaluating CO2 separation performance under dry or wet conditions. J. Membr. Sci. 2022, 658, 120735. [Google Scholar] [CrossRef]
- Inoue, R.; Kanezashi, M.; Nagasawa, H.; Yamamoto, K.; Gunji, T.; Tsuru, T. Pore size tuning of bis (triethoxysilyl) propane (BTESP)-derived membrane for gas separation: Effects of the acid molar ratio in the sol and of the calcination temperature. Sep. Purif. Technol. 2020, 242, 116742. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, S.J.; Kim, J.W.; Kang, P.H.; Nho, Y.C.; Lee, Y.S. A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J. Ind. Eng. Chem. 2009, 15, 66–71. [Google Scholar] [CrossRef]
- Zazzera, L.A.; Moulder, J.F. XPS and SIMS Study of Anhydrous HF and UV/Ozone-Modified Silicon (100) Surfaces. J. Electrochem. Soc. 1989, 136, 484. [Google Scholar] [CrossRef]
- Zhang, W.; Dubois, M.; Guérin, K.; Bonnet, P.; Kharbache, H.; Masin, F.; Hamwi, A. Effect of curvature on C–F bonding in fluorinated carbons: From fullerene and derivatives to graphite. Phys. Chem. Chem. Phys. 2010, 12, 1388–1398. [Google Scholar] [CrossRef]
- Xu, P.; Wang, F.; Fan, G.; Xu, X.; Tang, P. Hypervalent Iodine (III) -Mediated Oxidative Fluorination of Alkylsilanes by Fluoride Ions. Angew. Chem. 2017, 129, 1121–1124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, I.; Nagaoka, T.; Nagasawa, H.; Tsuru, T.; Kanezashi, M. The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes. Membranes 2022, 12, 991. https://doi.org/10.3390/membranes12100991
Rana I, Nagaoka T, Nagasawa H, Tsuru T, Kanezashi M. The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes. Membranes. 2022; 12(10):991. https://doi.org/10.3390/membranes12100991
Chicago/Turabian StyleRana, Ikram, Takahiro Nagaoka, Hiroki Nagasawa, Toshinori Tsuru, and Masakoto Kanezashi. 2022. "The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes" Membranes 12, no. 10: 991. https://doi.org/10.3390/membranes12100991
APA StyleRana, I., Nagaoka, T., Nagasawa, H., Tsuru, T., & Kanezashi, M. (2022). The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes. Membranes, 12(10), 991. https://doi.org/10.3390/membranes12100991