Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Membranes
2.1.1. PBI-O-PhT Polymer Preparation
2.1.2. Preparation of Crosslinked Membranes
2.1.3. PBI/KH 560-Reinforced Membrane
2.2. Material Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaroslavtsev, A.B.; Stenina, I.A.; Golubenko, D.V. Membrane materials for energy production and storage. Pure Appl. Chem. 2020, 92, 1147–1157. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Moore, R.B.; Mauritz, K.A. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Kalathil, A.; Raghavan, A.; Kandasubramanian, B. Polymer Fuel Cell Based on Polybenzimidazole Membrane: A Review. Polym. Plast. Technol. Mater. 2019, 58, 465–497. [Google Scholar] [CrossRef]
- Filippov, S.P.; Yaroslavtsev, A.B. Hydrogen energy: Development prospects and materials. Russ. Chem. Rev. 2021, 90, 627–643. [Google Scholar] [CrossRef]
- Li, Q.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, 449–477. [Google Scholar] [CrossRef] [Green Version]
- Yaroslavtsev, A.B.; Stenina, I.A.; Kulova, T.L.; Skundin, A.M.; Desyatov, A.V. Nanomaterials for Electrical Energy Storage. In Comprehensive Nanoscience and Nanotechnology, V.5 Applications of Nanoscience, 2nd ed.; Andrews, D.L., Nann, T., Lipson, R.H., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego, CA, USA; San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2019. [Google Scholar]
- Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Castillo, L.F.; Compañ, V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers 2020, 12, 1861. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Society Rev. 2021, 50, 1138–1187. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Wang, S.; Li, J.; Liu, G.; Cui, Y.; Liang, D.; Wang, X.; Yong, Z.; Wang, Z. High-Performance Proton Exchange Membranes Based on Block Polybenzimidazole and Organic-Inorganic Fillers with a Low Acid Doping Level. ACS Appl. Energy Mater. 2022, 5, 2553–2563. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, Q.; Shen, X.; Wang, S.; Xiang, J.; Zhang, L.; Cheng, P.; Du, X.; Yin, Z.; Tang, N. Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. J. Power Sources 2022, 528, 231218. [Google Scholar] [CrossRef]
- Qu, E.; Hao, X.; Xiao, M.; Han, D.; Huang, S.; Huang, Z.; Wang, S.; Meng, Y. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. J. Power Sources 2022, 533, 231386. [Google Scholar] [CrossRef]
- Peng, J.; Fu, X.; Liu, D.; Luo, J.; Wang, L.; Peng, X. An effective strategy to enhance dimensional-mechanical stability of phosphoric acid doped polybenzimidazole membranes by introducing in situ grown covalent organic frameworks. J. Membr. Sci. 2022, 655, 120603. [Google Scholar] [CrossRef]
- Lysova, A.A.; Ponomarev, I.I.; Yaroslavtsev, A.B. Effect of the nature of functional groups grafted on the surface of silica nanoparticles on properties of the hybrid proton-conductive membranes based on N-phosphorylated polybenzimidazole. Mendeleev Commun. 2019, 29, 403–404. [Google Scholar] [CrossRef]
- Guo, Z.; Perez-Page, M.; Chen, J.; Ji, Z.; Holmes, S.M. Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. J. Energy Chem. 2021, 63, 393–429. [Google Scholar] [CrossRef]
- Yang, J.; Gao, L.; Wang, J.; Xu, Y.; Liu, C.; He, R. Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromol. Chem. Phys. 2017, 218, 1700009. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Y.; Liu, P.; Gao, L.; Che, Q.; He, R. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim. Acta 2015, 160, 281–287. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Pan, C.; Bjerrum, N.J.; He, R. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv. Energy Mater. 2013, 3, 622–630. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Liu, Y.; Wang, L. Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. J. Membr. Sci. 2019, 583, 110–117. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, H.; Gao, L.; Wang, J.; Xu, Y.; He, R. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 3299–3307. [Google Scholar] [CrossRef]
- Harilal; Nayak, R.; Ghosh, P.C.; Jana, T. Cross-Linked Polybenzimidazole Membrane for PEM Fuel Cells. ACS Appl. Polym. Mater. 2020, 2, 3161–3170. [Google Scholar] [CrossRef]
- Özdemir, Y.; Özkan, N.; Devrim, Y. Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells. Electrochim. Acta 2017, 245, 1–13. [Google Scholar] [CrossRef]
- Kerres, J.; Atanasov, V. Cross-linked PBI-based high-temperature membranes: Stability, conductivity and fuel cell Performance. Int. J. Hydrogen Energy 2015, 40, 14723–14735. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, C.; Ma, W.; Zhang, N.; Zhang, Y.; Zhang, G.; Liu, Z.; Na, H. Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells. J. Mater. Chem. A 2013, 1, 621–629. [Google Scholar] [CrossRef]
- Fomenkov, A.I.; Blagodatskikh, I.V.; Ponomarev, I.I.; Volkova, Y.A.; Ponomarev, I.I.; Khokhlov, A.R. Synthesis and molecular mass characteristics of some cardo poly(benzimidazoles). Polym. Sci. Ser. B 2009, 51, 166–173. [Google Scholar] [CrossRef]
- Iwakura, Y.; Uno, K.; Imai, Y. Polyphenylenebenzimidazoles. J. Polym. Sci. A 1964, 2, 2605–2615. [Google Scholar] [CrossRef]
- Yuan, Y.; Johnson, F.; Cabasso, I. Polybenzimidazole (PBI) molecular weight and Mark-Houwink equation. J. Appl. Polym. Sci. 2009, 112, 3436–3441. [Google Scholar] [CrossRef]
- Lysova, A.A.; Ponomarev, I.V.I.; Volkova, Y.A.; Ponomarev, I.I.; Yaroslavtsev, A.B. Effect of Phosphorylation of Polybenzimidazole on Its Conductive Properties. Pet. Chem. 2018, 58, 958–964. [Google Scholar] [CrossRef]
- Lysova, A.A.; Stenina, I.A.; Volkov, A.O.; Ponomarev, I.I.; Yaroslavtsev, A.B. Proton conductivity of hybrid membranes based on polybenzimidazoles and surface-sulfonated silica. Solid State Ion. 2019, 329, 25–30. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Baurmeister, J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 2008, 176, 428–434. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Becker, H.; Aili, D.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. J. Power Sources 2017, 342, 570–578. [Google Scholar] [CrossRef] [Green Version]
- Stenina, I.A.; Yaroslavtsev, A.B. Ionic Mobility in Ion-Exchange Membranes. Membranes 2021, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Lysova, A.A.; Yaroslavtsev, A.B. New Proton-Conducting Membranes Based on Phosphorylated Polybenzimidazole and Silica. Inorg. Mater. 2019, 55, 470–476. [Google Scholar] [CrossRef]
- Liao, J.H.; Li, Q.F.; Rudbeck, H.C.; Jensen, J.O.; Chromik, A.; Bjerrum, N.J.; Kerres, J.; Xing, W. Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells. Fuel Cells 2011, 11, 745–755. [Google Scholar] [CrossRef]
- Ponomarev, I.I.; Skupov, K.M.; Modestov, A.D.; Lysova, A.A.; Ponomarev, I.I.; Vtyurina, E.S. Cardo polybenzimidazole (PBI-O-PhT) based membrane rein-forced with m-polybenzimidazole electrospun nanofiber mat for HT-PEM fuel cell applications. Membranes 2022, 12, 956. [Google Scholar] [CrossRef]
Crosslinking Degree | SiBr | SibiC | KH 560 |
---|---|---|---|
0 | 0 | ||
0.01 | 17.3 | 0 | 58.6 |
0.03 | 53.9 | 0 | 82.7 |
0.05 | 83.2 | 0 | 95.8 |
0.1 | 90.9 | 55.1 | 97.0 |
0.3 | 100.0 | 92.3 | 98.6 |
0.5 | 100.0 | 96.5 | 98.0 |
Crosslinking Degree | Acid Doping Level (n) | Acid Leaching (%) | ||||
---|---|---|---|---|---|---|
SiBr | SibiC | KH 560 | SiBr | SibiC | KH 560 | |
0 (initial PBI) | 9.7 | 96 | ||||
0.01 | 9.7 | 9.7 | 9.7 | - | - | - |
0.03 | 9.7 | 9.7 | 9.8 | - | - | - |
0.05 | 9.7 | 9.7 | 9.9 | 70 | 76 | 86 |
0.1 | 10.1 | 9.6 | 10.2 | 79 | 71 | 86 |
0.3 | 10.1 | 9.3 | 10.2 | - | - | - |
0.5 | 10.2 | 8.9 | 9.9 | 84 | 79 | 63 |
Sample | Without Acid | After Acid Doping | |||
---|---|---|---|---|---|
Young’s Modulus, MPa | Proportional Limit Stress, MPa | Tensile Strengh, MPa | Young’s Modulus, MPa | Proportional Limit Stress, MPa | |
PBI | 24.9 ± 0.8 | 80 ± 4 | 91 ± 3 | 1.7 ± 0.4 | 5.5 ± 0.9 |
PBI/SiBr-0.1 | 26 ± 1 | 98 ± 5 | 104 ± 1 | 1.8 ± 0.5 | 5.7 ± 1 |
PBI/SiBr-0.5 | 23 ± 1 | 93 ± 5 | 104 ± 4 | 3.8 ± 0.4 | 11.4 ± 0.1 |
PBI/SibiC-0.1 | 22.4 ± 0.4 | 100 ± 3 | 109 ± 1 | 4.1 ± 0.2 | 16 ± 1 |
PBI/SibiC-0.5 | 22.6 ± 0.8 | 105 ± 2 | 116 ± 2 | 4.5 ± 0.6 | 20 ± 3 |
PBI/KH 560-0.1 | 17.1 ± 0.5 | 79 ± 2 | 90 ± 4 | 3.3 ± 0.2 | 11.6 ± 0.4 |
PBI/KH 560-0.5 | 18 ± 1 | 79 ± 2 | 96 ± 2 | 5 ± 1 | 11.9 ± 0.8 |
Crosslinking Degree | RH, % | SiBr | SibiC | KH 560 |
---|---|---|---|---|
0 | 50 | (2.8 ± 0.6) × 10−9 | ||
70 | (7.0 ± 0.4) × 10−9 | |||
0.1 | 50 | (2.2 ± 0.4) × 10−9 | (4.4 ± 0.7) × 10−9 | (2.3 ± 0.4) × 10−9 |
70 | (5.7 ± 0.7) × 10−9 | (1.14 ± 0.03) × 10−8 | (4.6 ± 0.8) × 10−9 | |
0.5 | 50 | (2.8 ± 0.2) × 10−9 | (4.0 ± 0.4) × 10−9 | (3.9 ± 0.4) × 10−9 |
70 | (5.8 ± 0.2) × 10−9 | (7.8 ± 1.2) × 10−9 | (5.9 ± 0.5) × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysova, A.A.; Ponomarev, I.I.; Skupov, K.M.; Vtyurina, E.S.; Lysov, K.A.; Yaroslavtsev, A.B. Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT. Membranes 2022, 12, 1078. https://doi.org/10.3390/membranes12111078
Lysova AA, Ponomarev II, Skupov KM, Vtyurina ES, Lysov KA, Yaroslavtsev AB. Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT. Membranes. 2022; 12(11):1078. https://doi.org/10.3390/membranes12111078
Chicago/Turabian StyleLysova, Anna A., Igor I. Ponomarev, Kirill M. Skupov, Elizaveta S. Vtyurina, Kirill A. Lysov, and Andrey B. Yaroslavtsev. 2022. "Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT" Membranes 12, no. 11: 1078. https://doi.org/10.3390/membranes12111078
APA StyleLysova, A. A., Ponomarev, I. I., Skupov, K. M., Vtyurina, E. S., Lysov, K. A., & Yaroslavtsev, A. B. (2022). Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT. Membranes, 12(11), 1078. https://doi.org/10.3390/membranes12111078