Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Pilot-Scale LEP-N-MBR System
2.2. Sampling and Analytical Methods
2.3. Specific Energy Demand Calculation
3. Results and Discussion
3.1. Frequency and Amplitude
3.2. Potting Material
3.3. Nutrient Removal
3.4. Sludge Characteristics
3.5. Energy Consumption
3.6. Potential Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belli, T.J.; Bassin, J.P.; Costa, R.E.; Akaboci, T.R.V.; Battistelli, A.A.; Lobo-Recio, M.A.; Lapolli, F.R. Evaluating the effect of air flow rate on hybrid and conventional membrane bioreactors: Implications on performance, microbial activity and membrane fouling. Sci. Total. Environ. 2021, 755, 142563. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tao, J.; Fan, F.; Xu, R.; Meng, F. A novel pilot-scale IFAS-MBR system with low aeration for municipal wastewater treatment: Linkages between nutrient removal and core functional microbiota. Sci. Total. Environ. 2021, 776, 145858. [Google Scholar] [PubMed]
- Yu, H.; Du, C.; Qu, F.; He, J.; Rong, H. Efficient biostimulants for bacterial quorum quenching to control fouling in MBR. Chemosphere 2022, 286, 131689. [Google Scholar] [PubMed]
- Teng, J.; Shen, L.; Xu, Y.; Chen, Y.; Wu, X.; He, Y.; Chen, J.; Lin, H. Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): Novel mechanistic insights. Chemosphere 2020, 248, 126013. [Google Scholar] [CrossRef]
- Tan, X.; Acquah, I.; Liu, H.; Li, W.; Tan, S. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere 2019, 220, 1150–1162. [Google Scholar]
- Liu, Q.; Ren, J.; Lu, Y.; Zhang, X.; Roddick, F.A.; Fan, L.; Wang, Y.; Yu, H.; Yao, P. A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J. Ind. Eng. Chem. 2021, 98, 42–59. [Google Scholar]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Hamedi, H.; Ehteshami, M.; Mirbagheri, S.A.; Rasouli, S.A.; Zendehboudi, S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. Can. J. Chem. Eng. 2018, 97, 32–58. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, Z.; Wahab, N.A.; Sahlan, S. Fouling control strategy for submerged membrane bioreactor filtration processes using aeration airflow, backwash, and relaxation: A review. Desalination Water Treat. 2016, 57, 17683–17695. [Google Scholar]
- Guerrini, A.; Romano, G.; Indipendenza, A. Energy Efficiency Drivers in Wastewater Treatment Plants: A Double Bootstrap DEA Analysis. Sustainability 2017, 9, 1126. [Google Scholar]
- De Sotto, R.; Bae, S. Nutrient removal performance and microbiome of an energy-efficient reciprocation MLE-MBR operated under hypoxic conditions. Water Res. 2020, 182, 115991. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, M.; Liu, J.; Zheng, L.; Wei, Y. Effects of mixed-liquor rheology on vibration of hollow-fiber membrane via particle image velocimetry and computational fluid dynamics. Sep. Purif. Technol. 2020, 239, 116590. [Google Scholar] [CrossRef]
- Bae, S.; De Sotto, R.; Lee, W.; Ho, J. Energy efficiency and biofouling control in a pilot-scale membrane bioreactor using low-frequency reciprocating motion and the succession of biofilm communities resistant to mechanical shear. Bioresour. Technol. Rep. 2020, 11, 100523. [Google Scholar] [CrossRef]
- Ullah, A.; Ahmad, J.; Khan, H.; Khan, S.W.; Zamani, F.; Hasan, S.W.; Starov, V.M.; Chew, J.W. Membrane oscillation and slot (pore) blocking in oil–water separation. Chem. Eng. Res. Des. 2019, 142, 111–120. [Google Scholar] [CrossRef]
- Ullah, A.; Shahzada, K.; Khan, S.W.; Starov, V. Purification of produced water using oscillatory membrane filtration. Desalination 2020, 491, 114428. [Google Scholar] [CrossRef]
- Zouboulis, A.; Peleka, E.; Ntolia, A. Treatment of Tannery Wastewater with Vibratory Shear-Enhanced Processing Membrane Filtration. Separations 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Kola, A.; Ye, Y.; Le-Clech, P.; Chen, V. Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications. J. Membr. Sci. 2014, 455, 320–329. [Google Scholar] [CrossRef]
- Kola, A.; Ye, Y.; Ho, A.; Le-Clech, P.; Chen, V. Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes. J. Membr. Sci. 2012, 409, 54–65. [Google Scholar]
- Jiang, S.; Xiao, S.; Chu, H.; Zhao, F.; Yu, Z.; Zhou, X.; Zhang, Y. Intelligent mitigation of fouling by means of membrane vibration for algae separation: Dynamics model, comprehensive evaluation, and critical vibration frequency. Water Res. 2020, 182, 115972. [Google Scholar] [CrossRef]
- Ho, J.; Smith, S.; Roh, H.K. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane. Water Sci. Technol. 2014, 70, 1998–2003. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano-Struct. Nano-Objects 2018, 16, 381–395. [Google Scholar] [CrossRef]
- Bakar, M.; Duk, R.; Przybyłek, M.; Kostrzewa, M. Mechanical and Thermal Properties of Epoxy Resin Modified with Polyurethane. J. Reinf. Plast. Compos. 2009, 28, 2107–2118. [Google Scholar] [CrossRef]
- Speth, T.F.; Gusses, A.M.; Scott Summers, R. Evaluation of nanofiltration pretreatments for flux loss control. Desalination 2000, 130, 31–44. [Google Scholar] [CrossRef]
- Ho, J.; Smith, S.; Kim, G.D.; Roh, H.K. Performance evaluation of a novel reciprocation membrane bioreactor (rMBR) for enhanced nutrient removal in wastewater treatment: A comparative study. Water Sci. Technol. 2015, 72, 917–927. [Google Scholar] [CrossRef]
- Krzeminski, P.; van der Graaf, J.-H.; van Lier, J.-B. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Sci. Technol. 2012, 65, 380–392. [Google Scholar] [CrossRef]
- Kaya, R.; Tirol, N.; Ozgun, H.; Ersahin, M.E.; Tarabara, V.V.; Yigit, N.O.; Arikan, O.A.; Koyuncu, I. Impact of Magnetically Induced Vibration on the Performance of Pilot-Scale Membrane Bioreactor. J. Environ. Eng. 2020, 146, 04020001. [Google Scholar] [CrossRef]
Parameters | Value/Setpoint |
---|---|
Material | Polytetrafluoroethylene (PTFE) |
Pore size | 0.1 μm |
Membrane modules | 4 |
Surface area per module | 25 m2 |
Total membrane surface | 100 m2 |
Operation flux | 17–28 LMH |
MLSS | 8000–13,000 mg·L−1 |
Vibrating frequency | 0.5 and 0.6 Hz |
Vibrating amplitude | 50, 75, and 100 mm |
Filtration: idling | 9 min: 1 min |
Chemical cleaning | Once per week |
HRT | 12 h |
SRT | 30 d |
Running time | 130 d |
Parameters | Influent (mg·L−1) | Effluent (mg·L−1) | Removal Efficiency (%) |
---|---|---|---|
COD | 267.50 ± 124.85 | 27.25 ± 11.25 | 88.22 ± 6.54 |
TN | 32.40 ± 8.68 | 12.46 ± 6.19 | 62.99 ± 11.06 |
NH3-N | 25.51 ± 8.46 | 0.30 ± 0.15 | 98.79 ± 0.52 |
TP | 3.90 ± 0.86 | 2.21 ± 0.51 | 45.16 ± 13.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, R.; Yu, Y.; Song, C.; Liang, M.; Lu, X.; Ren, D.; Wu, X.; Zan, F. Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes. Membranes 2022, 12, 1085. https://doi.org/10.3390/membranes12111085
Zuo R, Yu Y, Song C, Liang M, Lu X, Ren D, Wu X, Zan F. Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes. Membranes. 2022; 12(11):1085. https://doi.org/10.3390/membranes12111085
Chicago/Turabian StyleZuo, Runzhang, Yubin Yu, Canhui Song, Muxiang Liang, Xiejuan Lu, Dajun Ren, Xiaohui Wu, and Feixiang Zan. 2022. "Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes" Membranes 12, no. 11: 1085. https://doi.org/10.3390/membranes12111085
APA StyleZuo, R., Yu, Y., Song, C., Liang, M., Lu, X., Ren, D., Wu, X., & Zan, F. (2022). Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes. Membranes, 12(11), 1085. https://doi.org/10.3390/membranes12111085