S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Synthesis of Undoped TiO2 and S,N-Doped TiO2 Powders
2.3. Preparation of α-Al2O3 Hollow Fiber (HF) Membranes
2.4. Preparation of Undoped TiO2 and S,N-Doped TiO2/Al2O3 HF Membranes
2.5. Characterization of Undoped TiO2 and S,N-Doped TiO2 Powder and Photocatalytic Membranes
2.6. Photocatalytic Degradation of Gaseous Ammonia
2.6.1. Photocatalytic Filter-type Module Evaluation (Reactor #1)
2.6.2. Photocatalytic Air Purifier Evaluation (Reactor #2)
3. Results and Discussion
3.1. Chemical and Physical Analysis of the Produced Samples
3.2. Photocatalytic Degradation of Gaseous Ammonia
3.2.1. NH3 Gas Removal Using the Photocatalytic Filter-type Module (Reactor #1)
3.2.2. NH3 Gas Removal Using the Photocatalytic Air purifier (Reactor #2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, G.D.; Wolkoff, P.; Alarie, Y. Sensory irritation: Risk assessment approaches. Regul. Toxicol. Pharmacol. 2007, 48, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Yuanqian, L.; Roy, M.H. Comparison of indoor and outdoor concentrations of acid gases, ammonia and their associated salts. Environ. Technol. 1990, 11, 315–326. [Google Scholar] [CrossRef]
- Mengze, L.; Charles, J.W.; Gabriel, B.; Pawel, W.; Gregor, L.; Jonathan, W. Human ammonia emission rates under various indoor environmental conditions. Environ. Sci. Technol. 2020, 54, 5419–5428. [Google Scholar] [CrossRef]
- Koci, K.; Reli, M.; Troppova, I.; Prostejovsky, T.; Zebrak, R. Degradation of ammonia from gas stream by advanced oxidation processes. J. Environ. Sci. Health—Toxic/Hazard. Subst. Environ. Eng. 2020, 55, 433–437. [Google Scholar] [CrossRef]
- Chou, M.S.; Wang, C.H. Treatment of ammonia in air stream by biotrickling filter. Aerosol Air Qual. Res. 2007, 7, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Yuzawa, H.; Mori, T.; Itoh, H.; Yoshida, H. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J. Phys. Chem. C 2012, 116, 4126–4136. [Google Scholar] [CrossRef]
- Liu, T.; Yang, R.; Zhang, G.; Wu, W.; Yang, Z.; Lin, R.; Wang, X.; Jiang, Y. Mechanism of selective catalytic reduction of NO with NH3 over CeO2-TiO2: Insight from in-situ DRIFTS and DFT calculations. Appl. Surf. Sci. 2021, 568, 150764. [Google Scholar] [CrossRef]
- Nasirian, M.; Lin, Y.P.; Bustillo-Lecompte, C.F.; Mehrvar, M. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review. Int. J. Environ. Sci. Technol. 2018, 15, 2009–2032. [Google Scholar] [CrossRef]
- Mittal, A.; Mari, B.; Sharma, S.; Kumari, V.; Maken, S.; Kumari, K.; Kumar, N. Non-metal modified TiO2: A step towards visible light photocatalysis. J. Mater. Sci. Mater. Electron. 2019, 30, 3186–3207. [Google Scholar] [CrossRef]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-,N- and S-doped TiO2 photocatalysts: A review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Magnone, E.; Hwang, J.Y.; Shin, M.C.; Zhuang, X.; Lee, J.I.; Park, J.H. Al2O3-based hollow fiber membranes functionalized by nitrogen-doped titanium dioxide for photocatalytic degradation of ammonia gas. Membranes 2022, 12, 693. [Google Scholar] [CrossRef]
- Magnone, E.; Lee, S.H.; Park, J.H. Relationships between electroless plating temperature, Pd film thickness and hydrogen separation performance of Pd-coated Al2O3 hollow fibers. Mater. Lett. 2020, 272, 127811. [Google Scholar] [CrossRef]
- Islam, S.Z.; Nagpure, S.; Kim, D.Y.; Rankin, S.E. Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Cravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D. Sulfur-doped TiO2: Structure and surface properties. Catalysts 2017, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Adriana, Z. Doped-TiO2: A Review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanath, R.P.; Gopinath, C.S. N,S-Co-doped TiO2 nanophotocatalyst: Synthesis, electronic structure and photocatalysis. J. Nanosci. Nanotechnol. 2009, 9, 423–432. [Google Scholar] [CrossRef]
- Nam, S.H.; Kim, T.K.; Boo, J.H. Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal. Today 2012, 185, 259–262. [Google Scholar] [CrossRef]
- Kumavat, S.; Arzoo, S.; Lakshm, N. Thiourea doped TiO2: Structural, optical and electrochemical properties. Mater. Today 2022, 49, 1861–1864. [Google Scholar] [CrossRef]
- Yalçın, Y.; Kılıç, M.; Çınar, Z. The role of non-metal doping in TiO2 photocatalysis. J. Adv. Oxid. Technol. 2010, 13, 281–296. [Google Scholar] [CrossRef]
- Bakre, P.V.; Tilve, S.G.; Shirsat, R.N. Influence of N sources on the photocatalytic activity of N-doped TiO2. Arab. J. Chem. 2020, 13, 7637–7651. [Google Scholar] [CrossRef]
- Li, X.; Xiong, R.; Wei, G. S–N co-doped TiO2 photocatalysts with visible-light activity prepared by sol–gel method. Catal. Lett. 2008, 125, 104–109. [Google Scholar] [CrossRef]
- Makropoulou, T.; Panagiotopoulou, P.; Venieri, D. N-doped TiO2 photocatalysts for bacterial inactivation in water. J. Chem. Technol. Biotechnol. 2018, 93, 2518–2526. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Zhang, G.S.; El-Hosainy, H.M.; Ismail, A.A.; O’Shea, K.E.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Magnone, E.; Park, J.H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. J. Membr. Sci. 2015, 494, 143–153. [Google Scholar] [CrossRef]
- Kim, M.K.; Pak, S.H.; Shin, M.C.; Park, C.G.; Magnone, E.; Park, J.H. Development of an advanced hybrid process coupling TiO2 photocatalysis and zeolite-based adsorption for water and wastewater treatment. Korean J. Chem. Eng. 2019, 36, 1201–1207. [Google Scholar] [CrossRef]
- Magnone, E.; Kim, M.K.; Lee, H.J.; Park, J.H. Facile synthesis of TiO2-supported Al2O3 ceramic hollow fiber substrates with extremely high photocatalytic activity and reusability. Ceram. Int. 2021, 47, 7764–7775. [Google Scholar] [CrossRef]
- Miranda, M.A.R.; Sasaki, J.M. The limit of application of the Scherrer equation. Acta Crystallogr. A Found. Adv. 2018, 74, 54–65. [Google Scholar] [CrossRef]
- Burdett, J.K.; Hughbanks, T.; Miller, G.J.; Richardson, J.W.; Smith, J.V. Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639–3646. [Google Scholar] [CrossRef]
- He, H.Y. Solvothermal synthesis and photocatalytic property of N doped TiO2 powders. Mater. Res. Innov. 2010, 14, 165–168. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007, 111, 6976–6982. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; He, T. The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys. Chem. Chem. Phys. 2013, 15, 20037. [Google Scholar] [CrossRef]
- Pal, M.; Pal, U.; Jiménez, J.M.G.Y.; Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Luo, N.; Huang, S.; Wu, N.L.; Wei, M. Sulfur-doped anatase TiO2 as an anode for high performance sodium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 3791–3797. [Google Scholar] [CrossRef]
- Khan, T.T.; Bari, G.A.K.M.R.; Kang, H.-J.; Lee, T.G.; Park, J.W.; Hwang, H.J.; Hossain, S.M.; Mun, J.S.; Suzuki, N.; Fujishima, A.; et al. Synthesis of N-doped TiO2 for efficient photocatalytic degradation of atmospheric NOx. Catalysts 2021, 11, 109. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Lin, Y.; Zhang, Y.; Wei, Y. Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceram. Int. 2009, 35, 3061–3065. [Google Scholar] [CrossRef]
- Wu, X.; Fang, S.; Zheng, Y.; Sun, J.; Lv, K. Thiourea-modified TiO2 nanorods with enhanced photocatalytic activity. Molecules 2016, 21, 181. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cheng, L.; An, Y.; Lv, S.; Wu, H.; Fan, X.; Zhang, Y.; Guo, X.; Tang, J. Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: Toward highly visible light-driven photocatalytic hydrogen evolution. Adv. Sci. 2018, 5, 1700870. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Bai, H.; Huang, Y.; Liu, S.; Yen, S.; Tseng, Y. Synthesis of neutral SiO2/TiO2 hydrosol and its application as antireflective self-cleaning thin film. Int. J. Photoenergy 2012, 620764, 8. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Dong, F.; Zhao, W.; Guo, S. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. J. Hazard. Mater. 2008, 157, 57–63. [Google Scholar] [CrossRef]
- Myilsamy, M.; Mahalakshmi, M.; Murugesan, V.; Subha, N. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2,4-dinitrophenol under visible light. Appl. Surf. Sci. 2015, 342, 1–10. [Google Scholar] [CrossRef]
- Szatmáry, L.; Bakardjieva, S.; Šubrt, J.; Bezdička, P.; Jirkovský, J.; Bastl, Z.; Brezová, V.; Korenko, M. Sulphur doped nanoparticles of TiO2. Catal. Today 2011, 161, 23–28. [Google Scholar] [CrossRef]
- Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Hongganga, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.Y.; Magnone, E.; Lee, J.I.; Zhuang, X.; Shin, M.C.; Park, J.H. S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia. Membranes 2022, 12, 1101. https://doi.org/10.3390/membranes12111101
Hwang JY, Magnone E, Lee JI, Zhuang X, Shin MC, Park JH. S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia. Membranes. 2022; 12(11):1101. https://doi.org/10.3390/membranes12111101
Chicago/Turabian StyleHwang, Jae Yeon, Edoardo Magnone, Jeong In Lee, Xuelong Zhuang, Min Chang Shin, and Jung Hoon Park. 2022. "S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia" Membranes 12, no. 11: 1101. https://doi.org/10.3390/membranes12111101
APA StyleHwang, J. Y., Magnone, E., Lee, J. I., Zhuang, X., Shin, M. C., & Park, J. H. (2022). S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia. Membranes, 12(11), 1101. https://doi.org/10.3390/membranes12111101