Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects
Abstract
:1. Introduction
2. Elastic Theory of Lipid Membranes
2.1. 2D Elasticity of Lipid Membranes
2.2. 3D Elasticity of Lipid Membranes
2.2.1. Basic Assumptions
2.2.2. Dimensional Reduction
3. Equilibrium Force Methods
3.1. Planar Lipid Bilayers
3.1.1. Macroscopic Stress Methods
3.1.2. Local Stress Methods
3.2. Tubular Membranes
3.2.1. Bilayer Tethers
3.2.2. Inverted Hexagonal Phase
3.3. Buckling
3.4. Sinusoidal Bilayers
3.5. Spontaneously Curved State
3.6. Collective-Variable Methods
4. Fluctuation-Based Methods
4.1. Fluctuations of Surface Area
4.2. Fluctuations of Volume
4.3. Fluctuations of Shape
4.4. Fluctuations of Director
4.5. Virtual Deformations
5. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeagle, P.L. The Membranes of Cells; Academic Press: Oxford, UK, 2016; ISBN 978-0-12-800047-2. [Google Scholar]
- Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. C 1973, 28, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Rawicz, W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 1990, 64, 2094. [Google Scholar] [CrossRef]
- Evans, E.; Rawicz, W.; Smith, B.A. Concluding remarks back to the future: Mechanics and thermodynamics of lipid biomembranes. Faraday Discuss. 2013, 161, 591–611. [Google Scholar] [CrossRef]
- Brochard, F.; Lennon, J.F. Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys. 1975, 36, 1035–1047. [Google Scholar] [CrossRef]
- Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [Google Scholar] [CrossRef]
- Kuzmin, P.I.; Zimmerberg, J.; Chizmadzhev, Y.A.; Cohen, F.S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA 2001, 98, 7235–7240. [Google Scholar] [CrossRef] [Green Version]
- Kozlovsky, Y.; Kozlov, M.M. Stalk model of membrane fusion: Solution of energy crisis. Biophys. J. 2002, 82, 882–895. [Google Scholar] [CrossRef] [Green Version]
- Bashkirov, P.V.; Akimov, S.A.; Evseev, A.I.; Schmid, S.L.; Zimmerberg, J.; Frolov, V.A. GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission. Cell 2008, 135, 1276–1286. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.A.; Escalada, A.; Akimov, S.A.; Shnyrova, A.V. Geometry of membrane fission. Chem. Phys. Lipids 2015, 185, 129–140. [Google Scholar] [CrossRef]
- Fournier, J.B. Coupling between membrane tilt-difference and dilation: A new “ripple” instability and multiple crystalline inclusions phases. EPL (Europhys. Lett.) 1998, 43, 725. [Google Scholar] [CrossRef]
- May, S.; Ben-Shaul, A. Molecular theory of lipid-protein interaction and the Lα-HII transition. Biophys. J. 1999, 76, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.M.; Deserno, M.; Guven, J. Interface-mediated interactions between particles: A geometrical approach. Phys. Rev. E 2005, 72, 061407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinigin, K.V.; Kuzmin, P.I.; Akimov, S.A.; Galimzyanov, T.R. Additional contributions to elastic energy of lipid membranes: Tilt-curvature coupling and curvature gradient. Phys. Rev. E 2020, 102, 042406. [Google Scholar] [CrossRef] [PubMed]
- Pinigin, K.V.; Volovik, M.V.; Batishchev, O.V.; Akimov, S.A. Interaction of Ordered Lipid Domain Boundaries and Amphipathic Peptides Regulates Probability of Pore Formation in Membranes. Biol. Membr. 2020, 37, 337–349. [Google Scholar] [CrossRef]
- Pinigin, K.V.; Galimzyanov, T.R.; Akimov, S.A. Interaction of Ordered Lipid Domains in the Presence of Amphipatic Peptides. Biol. Membr. 2021, 38, 163–175. [Google Scholar] [CrossRef]
- Pinigin, K.V.; Galimzyanov, T.R.; Akimov, S.A. Amphipathic peptides impede lipid domain fusion in phase-separated membranes. Membranes 2021, 11, 797. [Google Scholar] [CrossRef]
- Campelo, F.; McMahon, H.T.; Kozlov, M.M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 2008, 95, 2325–2339. [Google Scholar] [CrossRef] [Green Version]
- Sodt, A.J.; Pastor, R.W. Molecular modeling of lipid membrane curvature induction by a peptide: More than simply shape. Biophys. J. 2014, 106, 1958–1969. [Google Scholar] [CrossRef] [Green Version]
- Sodt, A.J.; Beaven, A.H.; Andersen, O.S.; Im, W.; Pastor, R.W. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. Biophys. J. 2017, 112, 1198–1213. [Google Scholar] [CrossRef] [Green Version]
- Akimov, S.A.; Volynsky, P.E.; Galimzyanov, T.R.; Kuzmin, P.I.; Pavlov, K.V.; Batishchev, O.V. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 2017, 7, 12509. [Google Scholar] [CrossRef]
- Akimov, S.A.; Volynsky, P.E.; Galimzyanov, T.R.; Kuzmin, P.I.; Pavlov, K.V.; Batishchev, O.V. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 2017, 7, 12152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galimzyanov, T.R.; Molotkovsky, R.J.; Bozdaganyan, M.E.; Cohen, F.S.; Pohl, P.; Akimov, S.A. Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 2015, 115, 088101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinigin, K.V.; Kondrashov, O.V.; Jiménez-Munguía, I.; Alexandrova, V.V.; Batishchev, O.V.; Galimzyanov, T.R.; Akimov, S.A. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci. Rep. 2020, 10, 4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondrashov, O.V.; Pinigin, K.V.; Akimov, S.A. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys. Rev. E 2021, 104, 044411. [Google Scholar] [CrossRef] [PubMed]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Symons, J.L.; Cho, K.J.; Chang, J.T.; Du, G.; Waxham, M.N.; Hancock, J.F.; Levental, I.; Levental, K.R. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 2021, 17, 288–297. [Google Scholar] [CrossRef]
- Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 2014, 208, 225–234. [Google Scholar] [CrossRef]
- Canham, P.B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 1970, 26, 61–81. [Google Scholar] [CrossRef]
- Helfrich, W.; Servuss, R.M. Undulations, steric interaction and cohesion of fluid membranes. Nuovo Cim. D 1984, 3, 137–151. [Google Scholar] [CrossRef]
- Bashkirov, P.V.; Kuzmin, P.I.; Chekashkina, K.; Arrasate, P.; Vera Lillo, J.; Shnyrova, A.V.; Frolov, V.A. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat. Protoc. 2020, 15, 2443–2469. [Google Scholar] [CrossRef]
- Zhang, G.; Müller, M. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers. J. Chem. Phys. 2017, 147, 064906. [Google Scholar] [CrossRef] [PubMed]
- Napoli, G.; Vergori, L. Equilibrium of nematic vesicles. J. Phys. A Math. Theor. 2010, 43, 445207. [Google Scholar] [CrossRef]
- Santiago, J.A.; Chacón-Acosta, G.; Monroy, F. Membrane stress and torque induced by Frank’s nematic textures: A geometric perspective using surface-based constraints. Phys. Rev. E 2019, 100, 012704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braganza, L.F.; Worcester, D.L. Structural Changes in Lipid Bilayers and Biological Membranes Caused by Hydrostatic Pressure. Biochemistry 1986, 25, 7484–7488. [Google Scholar] [CrossRef] [PubMed]
- Scarlata, S.F. Compression of lipid membranes as observed at varying membrane positions. Biophys. J. 1991, 60, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Tosh, R.E.; Collings, P.J. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochim. Biophys. Acta (BBA)-Biomembr. 1986, 859, 10–14. [Google Scholar] [CrossRef]
- Vennemann, N.; Lechner, M.D.; Henkel, T.; Knoll, W. Densitometric Characterization of the Main Phase Transition of Dimyristoyl-Phosphatidylcholine between 0.1 and 40 MPa. Ber. Bunsenges. Phys. Chem. 1986, 90, 888–891. [Google Scholar] [CrossRef]
- Fine, R.A.; Millero, F.J. Compressibility of water as a function of temperature and pressure. J. Chem. Phys. 1973, 59, 5529–5536. [Google Scholar] [CrossRef]
- Terzi, M.M.; Ergüder, M.F.; Deserno, M. A consistent quadratic curvature-tilt theory for fluid lipid membranes. J. Chem. Phys. 2019, 151, 164108. [Google Scholar] [CrossRef]
- Terzi, M.M.; Deserno, M. Novel tilt-curvature coupling in lipid membranes. J. Chem. Phys. 2017, 147, 084702. [Google Scholar] [CrossRef]
- Terzi, M.M.; Deserno, M.; Nagle, J.F. Mechanical properties of lipid bilayers: A note on the Poisson ratio. Soft Matter 2019, 15, 9085–9092. [Google Scholar] [CrossRef] [PubMed]
- Kalutsky, M.A.; Galimzyanov, T.R.; Pinigin, K.V. Local stress and elastic properties of lipid membranes obtained from elastic energy variation. arXiv 2022, arXiv:2206.11781. [Google Scholar]
- Hamm, M.; Kozlov, M.M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 2000, 3, 323–335. [Google Scholar] [CrossRef]
- Templer, R.H.; Castle, S.J.; Curran, A.R.; Rumbles, G.; Klug, D.R. Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. Faraday Discuss. 1999, 111, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Kamo, T.; Nakano, M.; Kuroda, Y.; Handa, T. Effects of an amphipathic α-helical peptide on lateral pressure and water penetration in phosphatidylcholine and monoolein mixed membranes. J. Phys. Chem. B 2006, 110, 24987–24992. [Google Scholar] [CrossRef] [PubMed]
- Ollila, O.S.; Vattulainen, I. Lateral Pressure Profiles in Lipid Membranes: Dependence on Molecular Composition. In Molecular Simulations and Biomembranes; The Royal Society of Chemistry: Cambridge, UK, 2010; pp. 26–55. [Google Scholar]
- Vanegas, J.M.; Torres-Sánchez, A.; Arroyo, M. Importance of force decomposition for local stress calculations in biomembrane molecular simulations. J. Chem. Theory Comput. 2014, 10, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Kollmitzer, B.; Heftberger, P.; Rappolt, M.; Pabst, G. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 2013, 9, 10877–10884. [Google Scholar] [CrossRef] [Green Version]
- Kaltenegger, M.; Kremser, J.; Frewein, M.P.; Ziherl, P.; Bonthuis, D.J.; Pabst, G. Intrinsic lipid curvatures of mammalian plasma membrane outer leaflet lipids and ceramides. Biochim. Biophys. Acta (BBA)-Biomembr. 2021, 1863, 183709. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics Vol 7: Theory and Elasticity; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 2015, 185, 11–45. [Google Scholar] [CrossRef]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; De Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef] [Green Version]
- Cooke, I.R.; Kremer, K.; Deserno, M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E 2005, 72, 011506. [Google Scholar] [CrossRef]
- Cooke, I.R.; Deserno, M. Solvent-free model for self-assembling fluid bilayer membranes: Stabilization of the fluid phase based on broad attractive tail potentials. J. Chem. Phys. 2005, 123, 224710. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.M.; Noguchi, H. Morphological changes of amphiphilic molecular assemblies induced by chemical reactions. Soft Matter 2015, 11, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Hoogerbrugge, P.J.; Koelman, J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys. Lett.) 1992, 19, 155. [Google Scholar] [CrossRef]
- Noguchi, H.; Gompper, G. Meshless membrane model based on the moving least-squares method. Phys. Rev. E 2006, 73, 021903. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, H.; Gompper, G. Dynamics of vesicle self-assembly and dissolution. J. Chem. Phys. 2006, 125, 164908. [Google Scholar] [CrossRef] [Green Version]
- Lyubartsev, A.P. Multiscale modeling of lipids and lipid bilayers. Eur. Biophys. J. 2005, 35, 53–61. [Google Scholar] [CrossRef]
- Zhang, Z.; Krajniak, J.; Ganesan, V. A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules 2021, 54, 4997–5010. [Google Scholar] [CrossRef]
- Krajniak, J.; Zhang, Z.; Pandiyan, S.; Nies, E.; Samaey, G. Coarse-grained molecular dynamics simulations of polymerization with forward and backward reactions. J. Comput. Chem. 2018, 39, 1764–1778. [Google Scholar] [CrossRef]
- Zhao, X.; Liao, C.; Ma, Y.T.; Ferrell, J.B.; Schneebeli, S.T.; Li, J. Top-down multiscale approach to simulate peptide self-assembly from monomers. J. Chem. Theory Comput. 2019, 15, 1514–1522. [Google Scholar] [CrossRef]
- Souza, P.C.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B.M.; Wassenaar, A.T.; et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Terzi, M.M.; Deserno, M. Lipid Membranes: From Self-assembly to Elasticity. In The Role of Mechanics in the Study of Lipid Bilayers; Steigmann, D.J., Ed.; Springer: Cham, Switzerland, 2018; Volume 577, ISBN 978-3-319-56347-3. [Google Scholar]
- Goetz, R.; Lipowsky, R. Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J. Chem. Phys. 1998, 108, 7397–7409. [Google Scholar] [CrossRef] [Green Version]
- Goetz, R.; Gompper, G.; Lipowsky, R. Mobility and elasticity of self-assembled membranes. Phys. Rev. Lett. 1999, 82, 221. [Google Scholar] [CrossRef] [Green Version]
- Feller, S.E.; Pastor, R.W. Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities. J. Chem. Phys. 1999, 111, 1281–1287. [Google Scholar] [CrossRef]
- Rawicz, W.; Olbrich, K.C.; McIntosh, T.; Needham, D.; Evans, E.A. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 2000, 79, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Ayton, G.; Voth, G.A. Bridging microscopic and mesoscopic simulations of lipid bilayers. Biophys. J. 2002, 83, 3357–3370. [Google Scholar] [CrossRef] [Green Version]
- den Otter, W.K. Area compressibility and buckling of amphiphilic bilayers in molecular dynamics simulations. J. Chem. Phys. 2005, 123, 214906. [Google Scholar] [CrossRef]
- Waheed, Q.; Edholm, O. Undulation contributions to the area compressibility in lipid bilayer simulations. Biophys. J. 2009, 97, 2754–2760. [Google Scholar] [CrossRef] [Green Version]
- Izvekov, S.; Voth, G.A. Solvent-free lipid bilayer model using multiscale coarse-graining. J. Phys. Chem. B 2009, 113, 4443–4455. [Google Scholar] [CrossRef] [Green Version]
- Berger, O.; Edholm, O.; Jähnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013. [Google Scholar] [CrossRef] [Green Version]
- Sodt, A.J.; Venable, R.M.; Lyman, E.; Pastor, R.W. Nonadditive compositional curvature energetics of lipid bilayers. Phys. Rev. Lett. 2016, 117, 138104. [Google Scholar] [CrossRef] [PubMed]
- Różycki, B.; Lipowsky, R. Spontaneous curvature of bilayer membranes from molecular simulations: Asymmetric lipid densities and asymmetric adsorption. J. Chem. Phys. 2015, 142, 054101. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.C.; Penev, E.S.; Welch, P.M.; Brown, F.L. Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. J. Chem. Phys. 2011, 135, 244701. [Google Scholar] [CrossRef]
- Venable, R.M.; Brown, F.L.; Pastor, R.W. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 2015, 192, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Campelo, F.; Arnarez, C.; Marrink, S.J.; Kozlov, M.M. Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 2014, 208, 25–33. [Google Scholar] [CrossRef]
- Hu, M.; De Jong, D.H.; Marrink, S.J.; Deserno, M. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discuss. 2013, 161, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Admal, N.C.; Tadmor, E.B. A unified interpretation of stress in molecular systems. J. Elast. 2010, 100, 63–143. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, A.; Vanegas, J.M.; Arroyo, M. Geometric derivation of the microscopic stress: A covariant central force decomposition. J. Mech. Phys. Solids 2016, 93, 224–239. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.M.; Noguchi, H. Nonuniqueness of local stress of three-body potentials in molecular simulations. Phys. Rev. E 2016, 94, 053304. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, H. Virtual bending method to calculate bending rigidity, saddle-splay modulus, and spontaneous curvature of thin fluid membranes. Phys. Rev. E 2020, 102, 053315. [Google Scholar] [CrossRef]
- Tian, A.; Baumgart, T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 2009, 96, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
- Bashkirov, P.V.; Kuzmin, P.I.; Lillo, J.V.; Frolov, V.A. Molecular shape solution for mesoscopic remodeling of cellular membranes. Annu. Rev. Biophys. 2022, 51, 473. [Google Scholar] [CrossRef] [PubMed]
- Harmandaris, V.A.; Deserno, M. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J. Chem. Phys. 2006, 125, 204905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiba, H.; Noguchi, H. Estimation of the bending rigidity and spontaneous curvature of fluid membranes in simulations. Phys. Rev. E 2011, 84, 031926. [Google Scholar] [CrossRef] [Green Version]
- Barragán Vidal, I.A.; Rosetti, C.M.; Pastorino, C.; Müller, M. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations. J. Chem. Phys. 2014, 141, 194902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbetta, C.; Fournier, J.B. On the fluctuations of the force exerted by a lipid nanotubule. Eur. Phys. J. E 2009, 29, 183–189. [Google Scholar] [CrossRef]
- Smirnova, Y.G.; Müller, M. Calculation of membrane bending rigidity using field-theoretic umbrella sampling. J. Chem. Phys. 2015, 143, 243155. [Google Scholar] [CrossRef]
- Shalaev, E.Y.; Steponkus, P.L. Phase diagram of 1, 2-dioleoylphosphatidylethanolamine (DOPE): Water system at subzero temperatures and at low water contents. Biochim. Et Biophys. Acta (BBA)-Biomembr. 1999, 1419, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Leikin, S.; Kozlov, M.M.; Fuller, N.L.; Rand, R.P. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 1996, 71, 2623–2632. [Google Scholar] [CrossRef] [Green Version]
- Sodt, A.J.; Pastor, R.W. Bending free energy from simulation: Correspondence of planar and inverse hexagonal lipid phases. Biophys. J. 2013, 104, 2202–2211. [Google Scholar] [CrossRef] [Green Version]
- Barragán Vidal, I.A.; Müller, M. Generalization of the swelling method to measure the intrinsic curvature of lipids. J. Chem. Phys. 2017, 147, 224902. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H. Anisotropic surface tension of buckled fluid membranes. Phys. Rev. E 2011, 83, 061919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecki, J. Size dependence, stability, and the transition to buckling in model reverse bilayers. J. Chem. Phys. 2006, 125, 154902. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Diggins IV, P.; Deserno, M. Determining the bending modulus of a lipid membrane by simulating buckling. J. Chem. Phys. 2013, 138, 214110. [Google Scholar] [CrossRef] [PubMed]
- Diggins IV, P.; McDargh, Z.A.; Deserno, M. Curvature softening and negative compressibility of gel-phase lipid membranes. J. Am. Chem. Soc. 2015, 137, 12752–12755. [Google Scholar] [CrossRef]
- Hossein, A.; Deserno, M. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys. J. 2020, 118, 624–642. [Google Scholar] [CrossRef]
- Hossein, A.; Deserno, M. Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size. J. Chem. Phys. 2021, 154, 014704. [Google Scholar] [CrossRef]
- Lorent, J.H.; Levental, K.R.; Ganesan, L.; Rivera-Longsworth, G.; Sezgin, E.; Doktorova, M.; Lyman, E.; Levental, I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. [Google Scholar] [CrossRef]
- Wang, X.; Deserno, M. Determining the lipid tilt modulus by simulating membrane buckles. J. Phys. Chem. B 2016, 120, 6061–6073. [Google Scholar] [CrossRef]
- Wang, X.; Deserno, M. Determining the pivotal plane of fluid lipid membranes in simulations. J. Chem. Phys. 2015, 143, 164109. [Google Scholar] [CrossRef]
- Baumgart, T.; Capraro, B.R.; Zhu, C.; Das, S.L. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 2011, 62, 483. [Google Scholar] [CrossRef] [PubMed]
- Eid, J.; Razmazma, H.; Jraij, A.; Ebrahimi, A.; Monticelli, L. On calculating the bending modulus of lipid bilayer membranes from buckling simulations. J. Phys. Chem. B 2020, 124, 6299–6311. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, S.; Nakamura, T.; Nielsen, S.O.; Shinoda, W. A guiding potential method for evaluating the bending rigidity of tensionless lipid membranes from molecular simulation. J. Chem. Phys. 2013, 139, 07B613_1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Hu, D.; Zhang, P. Measuring the spontaneous curvature of bilayer membranes by molecular dynamics simulations. Commun. Comput. Phys. 2013, 13, 1093–1106. [Google Scholar] [CrossRef]
- Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. [Google Scholar] [CrossRef]
- Awasthi, N.; Hub, J.S. Simulations of pore formation in lipid membranes: Reaction coordinates, convergence, hysteresis, and finite-size effects. J. Chem. Theory Comput. 2016, 12, 3261–3269. [Google Scholar] [CrossRef]
- Bubnis, G.; Risselada, H.J.; Grubmüller, H. Exploiting lipid permutation symmetry to compute membrane remodeling free energies. Phys. Rev. Lett. 2016, 117, 188102. [Google Scholar] [CrossRef] [Green Version]
- Masone, D.; Uhart, M.; Bustos, D.M. Bending lipid bilayers: A closed-form collective variable for effective free-energy landscapes in quantitative biology. J. Chem. Theory Comput. 2018, 14, 2240–2245. [Google Scholar] [CrossRef]
- Bouvier, B. Curvature as a collective coordinate in enhanced sampling membrane simulations. J. Chem. Theory Comput. 2019, 15, 6551–6561. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.H. Molecular Dynamics Simulations of Curved Lipid Membranes. Int. J. Mol. Sci. 2022, 23, 8098. [Google Scholar] [CrossRef]
- Bassereau, P.; Jin, R.; Baumgart, T.; Deserno, M.; Dimova, R.; Frolov, V.A.; Bashkirov, P.V.; Grubmüller, H.; Jahn, R.; Risselada, H.J.; et al. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys. 2018, 51, 343001. [Google Scholar] [CrossRef] [PubMed]
- Galimzyanov, T.R.; Bashkirov, P.V.; Blank, P.S.; Zimmerberg, J.; Batishchev, O.V.; Akimov, S.A. Monolayerwise application of linear elasticity theory well describes strongly deformed lipid membranes and the effect of solvent. Soft Matter 2020, 16, 1179–1189. [Google Scholar] [CrossRef]
- Hu, M.; Briguglio, J.J.; Deserno, M. Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys. J. 2012, 102, 1403–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doktorova, M.; LeVine, M.V.; Khelashvili, G.; Weinstein, H. A new computational method for membrane compressibility: Bilayer mechanical thickness revisited. Biophys. J. 2019, 116, 487–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falck, E.; Patra, M.; Karttunen, M.; Hyvönen, M.T.; Vattulainen, I. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 2004, 87, 1076–1091. [Google Scholar] [CrossRef] [Green Version]
- Kupiainen, M.; Falck, E.; Ollila, S.; Niemelä, P.; Gurtovenko, A.A.; Hyvönen, M.T.; Patra, M.; Karttunen, M.; Vattulainen, I. Free volume properties of sphingomyelin, DMPC, DPPC, and PLPC bilayers. J. Comput. Theor. Nanosci. 2005, 2, 401–413. [Google Scholar] [CrossRef]
- Song, Y.; Guallar, V.; Baker, N.A. Molecular dynamics simulations of salicylate effects on the micro-and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer. Biochemistry 2005, 44, 13425–13438. [Google Scholar] [CrossRef] [Green Version]
- Venable, R.M.; Skibinsky, A.; Pastor, R.W. Constant surface tension molecular dynamics simulations of lipid bilayers with trehalose. Mol. Simul. 2006, 32, 849–855. [Google Scholar] [CrossRef]
- May, E.R.; Narang, A.; Kopelevich, D.I. Role of molecular tilt in thermal fluctuations of lipid membranes. Phys. Rev. E 2007, 76, 021913. [Google Scholar] [CrossRef]
- Tarazona, P.; Chacón, E.; Bresme, F. Thermal fluctuations and bending rigidity of bilayer membranes. J. Chem. Phys. 2013, 139, 094902. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Muñoz, J.; Bresme, F.; Tarazona, P.; Chacón, E. Bending Modulus of Lipid Membranes from Density Correlation Functions. J. Chem. Theory Comput. 2022, 18, 3151–3163. [Google Scholar] [CrossRef] [PubMed]
- den Otter, W.K.; Briels, W.J. The bending rigidity of an amphiphilic bilayer from equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 2003, 118, 4712–4720. [Google Scholar] [CrossRef]
- Fiorin, G.; Marinelli, F.; Faraldo-Gómez, J.D. Direct derivation of free energies of membrane deformation and other solvent density variations from enhanced sampling molecular dynamics. J. Comput. Chem. 2020, 41, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Farago, O.; Pincus, P. The effect of thermal fluctuations on Schulman area elasticity. Eur. Phys. J. E 2003, 11, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Farago, O.; Pincus, P. Statistical mechanics of bilayer membrane with a fixed projected area. J. Chem. Phys. 2004, 120, 2934–2950. [Google Scholar] [CrossRef] [Green Version]
- Imparato, A. Surface tension in bilayer membranes with fixed projected area. J. Chem. Phys. 2006, 124, 154714. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Lubensky, T.C.; Nelson, P.; Powers, T. Measure factors, tension, and correlations of fluid membranes. J. Phys. II 1994, 4, 931–949. [Google Scholar] [CrossRef] [Green Version]
- Schmid, F. Fluctuations in lipid bilayers: Are they understood? Biophys. Rev. Lett. 2013, 8, 1–20. [Google Scholar] [CrossRef]
- Durand, M. Frame tension governs the thermal fluctuations of a fluid membrane: New evidence. Soft Matter 2022, 18, 3891–3901. [Google Scholar] [CrossRef]
- Ergüder, M.F.; Deserno, M. Identifying systematic errors in a power spectral analysis of simulated lipid membranes. J. Chem. Phys. 2021, 154, 214103. [Google Scholar] [CrossRef]
- Leibler, S. Curvature instability in membranes. J. Phys. 1986, 47, 507–516. [Google Scholar] [CrossRef]
- Fournier, J.B.; Galatola, P. Critical fluctuations of tense fluid membrane tubules. Phys. Rev. Lett. 2007, 98, 018103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, M.C.; Brandt, E.G.; Welch, P.M.; Brown, F.L. Determining biomembrane bending rigidities from simulations of modest size. Phys. Rev. Lett. 2012, 109, 028102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, Z.A.; Venable, R.M.; Watson, M.C.; Lerner, M.G.; Shea, J.E.; Pastor, R.W.; Brown, F.L. Determination of biomembrane bending moduli in fully atomistic simulations. J. Am. Chem. Soc. 2014, 136, 13582–13585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khelashvili, G.; Harries, D. How cholesterol tilt modulates the mechanical properties of saturated and unsaturated lipid membranes. J. Phys. Chem. B 2013, 117, 2411–2421. [Google Scholar] [CrossRef]
- Khelashvili, G.; Kollmitzer, B.; Heftberger, P.; Pabst, G.; Harries, D. Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. J. Chem. Theory Comput. 2013, 9, 3866–3871. [Google Scholar] [CrossRef] [PubMed]
- Doktorova, M.; Harries, D.; Khelashvili, G. Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys. Chem. Chem. Phys. 2017, 19, 16806–16818. [Google Scholar] [CrossRef]
- Lakes, S.R. Composite Biomaterials. In The Biomedical Engineering Handbook; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Chakraborty, S.; Doktorova, M.; Molugu, T.R.; Heberle, F.A.; Scott, H.L.; Dzikovski, B.; Nagao, M.; Stingaciu, L.R.; Standaert, R.F.; Barrera, F.N.; et al. How cholesterol stiffens unsaturated lipid membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 21896–21905. [Google Scholar] [CrossRef]
- Kozlov, M.M.; Helfrich, W. Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer. Langmuir 1992, 8, 2792–2797. [Google Scholar] [CrossRef]
- Siegel, D.P. The Gaussian curvature elastic energy of intermediates in membrane fusion. Biophys. J. 2008, 95, 5200–5215. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinigin, K.V. Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects. Membranes 2022, 12, 1149. https://doi.org/10.3390/membranes12111149
Pinigin KV. Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects. Membranes. 2022; 12(11):1149. https://doi.org/10.3390/membranes12111149
Chicago/Turabian StylePinigin, Konstantin V. 2022. "Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects" Membranes 12, no. 11: 1149. https://doi.org/10.3390/membranes12111149
APA StylePinigin, K. V. (2022). Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects. Membranes, 12(11), 1149. https://doi.org/10.3390/membranes12111149