Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
Development of Nanofiber/Textile Composites
3. Characterization
3.1. SEM Characterization of Electrospun Nanofibers
3.2. Surface Area and Porosity
3.3. Mechanical Testing of Electrospun Nanofibers
4. Results and Discussions
4.1. Nanofibers Morphology
4.1.1. Impact of Polymer Concentration
4.1.2. Impact of the Applied Voltage
4.1.3. Impact of Collecting Distance
4.2. Surface Area and Porosity
4.3. Tensile and Bursting Strength of Nanomembranes
4.4. Tear Strength Analysis of Composite and Standard Structures
4.5. Bursting Strength Analysis of Composite and Standard Structures
4.6. Tensile Strength Analysis of Composite and Standard Structures
4.7. Elongation Properties Analysis of Composite and Standard Structures
4.8. Stiffness of Composite and Standard Structures
4.9. Puncture Resistance of Composite and Standard Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rigby, A.J.; Anand, S.C.; Horrocks, A.R. Textile Materials for Medical and Healthcare Applications. J. Text. Inst. 1997, 88, 83–93. [Google Scholar] [CrossRef]
- Brocket, J.; Shaban, R.Z. Characteristics of a successful hospital hand hygiene program: An Australian perspective. Healthc. Infect. 2015, 20, 101–107. [Google Scholar] [CrossRef]
- Burnett-Boothroyd, S.; McCarthy, B. Antimicrobial treatments of textiles for hygiene and infection control applications: An industrial perspective. In Textiles for Hygiene and Infection Control; Elsevier: Amsterdam, The Netherlands, 2011; pp. 196–209. [Google Scholar]
- Ahmad, A.; Ali, U.; Nazir, A.; Shahzad, A.; Khaliq, Z.; Qadir, M.B.; Khan, M.A.; Ali, S.; Hassan, M.A.; Abid, S.; et al. Toothed wheel needleless electrospinning: A versatile way to fabricate uniform and finer nanomembrane. J. Mater. Sci. 2019, 54, 13834–13847. [Google Scholar] [CrossRef]
- Shekar, K.; Mullany, D.V.; Thomson, B.; Ziegenfuss, M.; Platts, D.G.; Fraser, J.F. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: A comprehensive review. Crit. Care 2014, 18, 219. [Google Scholar] [CrossRef] [Green Version]
- Joung, Y.-H. Development of Implantable Medical Devices: From an Engineering Perspective. Int. Neurourol. J. 2013, 17, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliadis, D.P.; Bourlos, D.N.; Mastrokalos, D.S.; Chronopoulos, E.; Babis, G.C. LARS Artificial Ligament versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2016, 4, 2325967116653359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacone, D.V.; Dartora, V.F.; de Matos, J.K.; Passos, J.S.; Miranda, D.A.; de Oliveira, E.A.; Silveira, E.R.; Costa-Lotufo, L.V.; Maria-Engler, S.S.; Lopes, L.B. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int. J. Biol. Macromol. 2020, 165, 1055–1065. [Google Scholar] [CrossRef]
- Ludwicka, A.; Jansen, B.; Wadström, T.; Pulverer, G. Attachment of staphylococci to various synthetic polymers. Zent. Für Bakteriol. Mikrobiol. und Hygiene. 1. Abt. Originale. A Med. Mikrobiol. Infekt. und Parasitol. 1984, 256, 479–489. [Google Scholar] [CrossRef]
- Ledet, E.H.; Liddle, B.; Kradinova, K.; Harper, S. Smart implants in orthopedic surgery, improving patient outcomes: A review. Innov. Entrep. Health 2018, 5, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Hinton, R.B.; Yutzey, K.E. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 2011, 73, 29. [Google Scholar] [CrossRef]
- Lockhart, K.; Dunn, D.; Teo, S.; Ng, J.Y.; Dhillon, M.; Teo, E.; van Driel, M.L. Mesh versus non-mesh for inguinal and femoral hernia repair. Cochrane Database Syst. Rev. 2018, 2018, CD011517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylón, K.; Rodríguez-Camarillo, P.; Elías-Zúñiga, A.; Díaz-Elizondo, J.A.; Gilkerson, R.; Lozano, K. Past, Present and Future of Surgical Meshes: A Review. Membranes 2017, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melman, L.; Jenkins, E.D.; Hamilton, N.A.; Bender, L.C.; Brodt, M.D.; Deeken, C.R.; Greco, S.C.; Frisella, M.M.; Matthews, B.D. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair. Hernia 2011, 15, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usher, F.C. Method of Hernia Repair. U.S. Patents US4347847A, 7 September 1982. [Google Scholar]
- Roeber P., J. Knit PTFE Articles and Mesh. U.S. Patent US20090036996A1, 5 February 2009. [Google Scholar]
- Kalliomäki, M.-L.; Meyerson, J.; Gunnarsson, U.; Gordh, T.; Sandblom, G. Long-term pain after inguinal hernia repair in a population-based cohort; risk factors and interference with daily activities. Eur. J. Pain 2008, 12, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Stoppa, R. Hernia of the abdominal wall. In Hernias and Surgery of the Abdominal Wall; Springer: Berlin/Heidelberg, Germany, 1998; pp. 171–277. [Google Scholar]
- Ali, M.; Zeeshan, M.; Ahmed, S.; Qadir, M.B.; Nawab, Y.; Anjum, A.S.; Riaz, R. Development and Comfort Characterization of 2D-Woven Auxetic Fabric for Wearable and Medical Textile Applications. Cloth. Text. Res. J. 2018, 36, 199–214. [Google Scholar] [CrossRef]
- Mitura, K.; Romańczuk, M. Valenti method (PAD) as an assesment of polypropylene mesh fixing standarization in inguinal hernia repair. Folia Med. Crac. 2008, 49, 3–9. [Google Scholar]
- Ramshaw, B.; Forman, B.R.; Heidel, E.; Barker, E. Laparoscopic Ventral Hernia Repair with a Non-Woven Hernia Mesh. Surg. Technol. Online 2019, 34, 227–234. [Google Scholar]
- Khanzada, H.; Salam, A.; Qadir, M.B.; Phan, D.-N.; Hassan, T.; Munir, M.U.; Pasha, K.; Hassan, N.; Khan, M.Q.; Kim, I.S. Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing. Materials 2020, 13, 3884. [Google Scholar] [CrossRef]
- Wu, S.; Dong, T.; Li, Y.; Sun, M.; Qi, Y.; Liu, J.; Kuss, M.A.; Chen, S.; Duan, B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 2022, 27, 101473. [Google Scholar] [CrossRef]
- Wei, L.; Sun, R.; Liu, C.; Xiong, J.; Qin, X. Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater. Des. 2019, 179, 107885. [Google Scholar] [CrossRef]
- Ebersole, G.C.; Buettmann, E.G.; MacEwan, M.R.; Tang, M.E.; Frisella, M.M.; Matthews, B.D.; Deeken, C.R. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg. Endosc. 2012, 26, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Molnár, K.; Voniatis, C.; Fehér, D.; Ferencz, A.; Fónyad, L.; Reiniger, L.; Zrinyi, M.; Wéber, G.; Jedlovszky-Hajdu, A. Biocompatibility study of poly (vinyl alcohol)-based electrospun scaffold for hernia repair. Express Polym. Lett. 2018, 12, 676–687. [Google Scholar] [CrossRef]
- Liu, P.; Chen, N.; Jiang, J.; Wen, X. New surgical meshes with patterned nanofiber mats. RSC Adv. 2019, 9, 17679–17690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veleirinho, B.; Coelho, D.S.; Dias, P.F.; Maraschin, M.; Pinto, M.R.R.; Cargnin-Ferreira, E.; Peixoto, A.; Souza, J.A.; Ribeiro-Do-Valle, R.M.; Lopes-Da-Silva, J.A. Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes. PLoS ONE 2014, 9, e95293. [Google Scholar] [CrossRef] [PubMed]
- Chakroff, J.; Kayuha, D.; Henderson, M.; Johnson, J. Development and Characterization of Novel Electrospun Meshes for Hernia Repair. SOJ Mater. Sci. Eng. 2015, 2, 1–9. [Google Scholar]
- Plencner, M.; Prosecká, E.; Rampichová, M.; East, B.; Buzgo, M.; Vysloužilová, L.; Hoch, J.; Amler, E. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int. J. Nanomed. 2015, 10, 2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, U.; Abbass, A.; Khurshid, F.; Aslam, S.; Waqar, A. Needleless Electrospinning Using a Flat Wheel Spinneret. J. Eng. Fibers Fabr. 2017, 12, 155892501701200310. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Wang, D.; Li, H.; Li, L.; Zhang, S.; Zhou, C.; Zheng, X.; Men, Q.; Zhong, J.; et al. Preparation and Chemical Protective Clothing Application of PVDF Based Sodium Sulfonate Membrane. Membranes 2020, 10, 190. [Google Scholar] [CrossRef]
- Sun, K.C.; Arbab, A.A.; Sahito, I.A.; Qadir, M.B.; Choi, B.J.; Kwon, S.C.; Yeo, S.Y.; Yi, S.C.; Jeong, S.H. A PVdF-based electrolyte membrane for a carbon counter electrode in dye-sensitized solar cells. RSC Adv. 2017, 7, 20908–20918. [Google Scholar] [CrossRef]
- Gikunda, M.N.; Harerimana, F.; Mangum, J.M.; Rahman, S.; Thompson, J.P.; Harris, C.T.; Churchill, H.O.H.; Thibado, P.M. Array of Graphene Variable Capacitors on 100 mm Silicon Wafers for Vibration-Based Applications. Membranes 2022, 12, 533. [Google Scholar] [CrossRef]
- Tang, Y.; Zhong, L.; Wang, W.; He, Y.; Han, T.; Xu, L.; Mo, X.; Liu, Z.; Ma, Y.; Bao, Y.; et al. Recent Advances in Wearable Potentiometric pH Sensors. Membranes 2022, 12, 504. [Google Scholar] [CrossRef] [PubMed]
- Goh, L.M.; Thong, Z.; Li, W.P.; Ooi, S.T.; Esa, F.; Ng, K.S.; Dhalla, A.; Gudipati, C. Development and Industrial-Scale Fabrication of Next-Generation Low-Energy Membranes for Desalination. Membranes 2022, 12, 540. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, T.; Wang, X. Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring. Fibers Polym. 2014, 15, 961–965. [Google Scholar] [CrossRef]
Sr. | Concentration (w/w%) | Voltage (kV) | Distance (cm) |
---|---|---|---|
1. | 18 | 40 | 16 |
2. | 18 | 45 | 16 |
3. | 18 | 50 | 16 |
4. | 18 | 40 | 20 |
5. | 18 | 45 | 20 |
6. | 18 | 50 | 20 |
7. | 18 | 40 | 24 |
8. | 18 | 45 | 24 |
9. | 18 | 50 | 24 |
10. | 20 | 40 | 16 |
11. | 20 | 45 | 16 |
12. | 20 | 50 | 16 |
13. | 20 | 40 | 20 |
14. | 20 | 45 | 20 |
15. | 20 | 50 | 20 |
16. | 20 | 40 | 24 |
17. | 20 | 45 | 24 |
18. | 20 | 50 | 24 |
19. | 22 | 40 | 16 |
20. | 22 | 45 | 16 |
21. | 22 | 50 | 16 |
22. | 22 | 40 | 20 |
23. | 22 | 45 | 20 |
24. | 22 | 50 | 20 |
25. | 22 | 40 | 24 |
26. | 22 | 45 | 24 |
27. | 22 | 50 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalalah, M.; Ahmad, A.; Saleem, A.; Qadir, M.B.; Khaliq, Z.; Khan, M.Q.; Nazir, A.; Faisal, M.; Alsaiari, M.; Irfan, M.; et al. Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. Membranes 2022, 12, 1158. https://doi.org/10.3390/membranes12111158
Jalalah M, Ahmad A, Saleem A, Qadir MB, Khaliq Z, Khan MQ, Nazir A, Faisal M, Alsaiari M, Irfan M, et al. Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. Membranes. 2022; 12(11):1158. https://doi.org/10.3390/membranes12111158
Chicago/Turabian StyleJalalah, Mohammed, Adnan Ahmad, Asad Saleem, Muhammad Bilal Qadir, Zubair Khaliq, Muhammad Qamar Khan, Ahsan Nazir, M. Faisal, Mabkhoot Alsaiari, Muhammad Irfan, and et al. 2022. "Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications" Membranes 12, no. 11: 1158. https://doi.org/10.3390/membranes12111158
APA StyleJalalah, M., Ahmad, A., Saleem, A., Qadir, M. B., Khaliq, Z., Khan, M. Q., Nazir, A., Faisal, M., Alsaiari, M., Irfan, M., Alsareii, S. A., & Harraz, F. A. (2022). Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. Membranes, 12(11), 1158. https://doi.org/10.3390/membranes12111158