A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EHD Printing for Silver Electrode
2.3. Characterization
3. Results and Discussion
3.1. Surface Treatment
3.2. Thermal Annealing
3.3. EHD Printing Ag Electrode Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Gu, S.; Liu, J.; Tian, H.; Lv, Q. Research and Development of a 3D Jet Printer for High-Viscosity Molten Liquids. Micromachines 2018, 9, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhards, C.; Marckmann, C.; Tolle, R.; Spiegel, M.; Fath, P.; Willeke, G.; Bucher, E.; Creager, J.; Narayanan, S. Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September–3 October 1997; pp. 43–46. [Google Scholar]
- Chinga-Carrasco, G. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices. Biomacromolecules 2018, 19, 701–711. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.; Lodge, T.P.; Frisbie, C.D. Electrolyte-Gated Transistors for Organic and Printed Electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.V.; Chikae, M.; Ukita, Y.; Takamura, Y. Enzyme-Free Glucose Sensor Based on Micro-nano Dualporous Gold-Modified Screen-Printed Carbon Electrode. Int. J. Electrochem. Sci. 2018, 13, 8633–8644. [Google Scholar]
- Singaraju, S.A.; Marques, G.C.; Gruber, P.; Kruk, R.; Hahn, H.; Breitung, B.; Aghassi-Hagmann, J. Fully Printed Inverters using Metal-Oxide Semiconductor and Graphene Passives on Flexible Substrates. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2020, 14, 2000252. [Google Scholar] [CrossRef]
- Gao, J.; Rong, W.; Gao, P.; Wang, L.; Sun, L. A programmable 3D printing method for magnetically driven micro soft robots based on surface tension. J. Micromech. Microeng. 2021, 31, 85006. [Google Scholar] [CrossRef]
- Julian, S.; Patrik, R.; Deepankur, T.; Martin, S.; Patrick, G.; Dimos, P. Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes. Adv. Funct. Mater. 2016, 26, 833–840. [Google Scholar]
- Cui, Z.; Han, Y.W.; Huang, Q.J.; Dong, J.Y.; Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 2018, 10, 6806–6811. [Google Scholar] [CrossRef]
- Peng, Z.; Gou, N.; Wei, Z.; Zhao, J.; Wang, F.; Yang, J.; Li, Y.; Lan, H. Fabrication of a Large-Area, Fused Polymer Micromold Based on Electric-Field-Driven (EFD) μ-3D Printing. Polymers 2019, 11, 1902. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Rahman, K.; Hyun, M.; Kim, D.; Choi, K. Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures. Appl. Phys. A Mater. Sci. Process. 2011, 104, 1113–1120. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Wang, Y.; Guo, Y.; Feng, Z. A particle-free silver precursor ink useful for inkjet printing to fabricate highly conductive patterns. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 1494–1499. [Google Scholar] [CrossRef]
- Ocak, Y.; Aksoz, S.; Marasli, N.; Keslioglu, K. Thermal and electrical conductivity of Sn-Ag-In alloys. J. Non-Cryst. Solids 2010, 356, 1795–1801. [Google Scholar] [CrossRef]
- Wang, K.; Stark, R.P.W. Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink. Appl. Phys. A 2010, 99, 763–766. [Google Scholar] [CrossRef]
- Lee, D.Y.; Shin, Y.S.; Park, S.E.; Yu, T.U.; Hwang, J. Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl. Phys. Lett. 2007, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Van Osch, T.H.; Perelaer, J.; De Laat, A.W.; Schubert, U.S. Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates. Adv. Mater. 2007, 20, 343–345. [Google Scholar] [CrossRef]
- Nair, K.; Whiteside, B.; Grant, C.; Patel, R.; Tuinea-Bobe, C.; Norris, K.; Paradkar, A. Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug Delivery. Pharmaceutics 2015, 7, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Moon, Y.J.; Kang, H.; Kang, K.; Moon, S.; Young Hwang, J. Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering. J. Electron. Mater. 2015, 44, 1192–1199. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Tran, V.T.; Suzuki, T.; Neethirajan, S.; Lee, J.; Park, E.Y. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci. Rep. 2017, 7, 44495. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Nakhaei, K.; Ishijima, M.; Ikeda, T.; Ghassemi, A.; Saruta, J.; Ogawa, T. Ultraviolet Light Treatment of Titanium Enhances Attachment, Adhesion, and Retention of Human Oral Epithelial Cells via Decarbonization. Materials 2021, 14, 151. [Google Scholar] [CrossRef]
- Li, H.; Tang, J.; Lin, F.; Wang, D.; Fang, D.; Fang, X.; Liu, W.; Chen, R.; Wei, Z. Improved Optical Property and Lasing of ZnO Nanowires by Ar Plasma Treatment. Nanoscale Res. Lett. 2019, 14, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, H.; Zhou, Y.; Fang, Z.; Yao, R.; Tao, R.; Chen, J.; Cai, W.; Zhu, Z.; Yang, C.; Wei, J.; et al. UV-Cured Inkjet-Printed Silver Gate Electrode with Low Electrical Resistivity. Nanoscale Res. Lett. 2017, 12, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, H.; Chen, J.; Fang, Z.; Tao, R.; Cai, W.; Yao, R.; Hu, S.; Zhu, Z.; Zhou, Y.; Yang, C.; et al. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors. Materials 2017, 10, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, P.; Hu, A.; Gerlich, A.P.; Zou, G.; Liu, L.; Zhou, Y.N. Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications. ACS Appl. Mater. Int. 2015, 7, 12597–12618. [Google Scholar] [CrossRef]
- Piuz, F.; Borel, J.P. Thermodynamical size effect in small particles of silver. Phys. Status Solidi A 1972, 14, 129–133. [Google Scholar] [CrossRef]
- Moulder, J.F. The impact of the scanning XPS microprobe on industrial applications of X-ray photoelectron spectroscopy. J. Electron. Spectrosc. 2019, 231, 43–49. [Google Scholar] [CrossRef]
- Khosravi-Gandomani, S.; Yousefi, R.; Jamali-Sheini, F.; Huang, N.M. Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram. Int. 2014, 40, 7957–7963. [Google Scholar] [CrossRef]
- Romand, M.; Roubin, M.; Deloume, J.P. X-ray photoelectron emission studies of mixed selenides AgGaSe 2 and Ag 9GaSe 6. J. Solid State Chem. 1978, 25, 59–64. [Google Scholar] [CrossRef]
- Lv, H.; Wang, X. Fabrication of Ag micro-patterns by electrohydrodynamic jet printing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 668, 12024. [Google Scholar] [CrossRef]
- Yuan, X.; Xiong, Z. High frequency pulsed electrohydrodynamic printing with controllable fine droplets. J. Micromech. Microeng. 2018, 28, 95008. [Google Scholar] [CrossRef]
- Fu, X.; Chen, Q.; Chen, X.; Zhang, L.; Yang, A.; Cui, Y.; Yuan, C.; Ge, H. A Rapid Thermal Nanoimprint Apparatus through Induction Heating of Nickel Mold. Micromachines 2019, 10, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Yao, R.; Zhang, G.; Zhang, X.; Liang, Z.; Yang, Y.; Ning, H.; Zhong, J.; Qiu, T.; Peng, J. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing. Membranes 2022, 12, 141. https://doi.org/10.3390/membranes12020141
Liang H, Yao R, Zhang G, Zhang X, Liang Z, Yang Y, Ning H, Zhong J, Qiu T, Peng J. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing. Membranes. 2022; 12(2):141. https://doi.org/10.3390/membranes12020141
Chicago/Turabian StyleLiang, Hongfu, Rihui Yao, Guanguang Zhang, Xu Zhang, Zhihao Liang, Yuexin Yang, Honglong Ning, Jinyao Zhong, Tian Qiu, and Junbiao Peng. 2022. "A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing" Membranes 12, no. 2: 141. https://doi.org/10.3390/membranes12020141
APA StyleLiang, H., Yao, R., Zhang, G., Zhang, X., Liang, Z., Yang, Y., Ning, H., Zhong, J., Qiu, T., & Peng, J. (2022). A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing. Membranes, 12(2), 141. https://doi.org/10.3390/membranes12020141