Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Water
2.2. Membranes
2.3. Membrane Filtration System
2.4. Operating Conditions
2.5. Measurement Fouling Mechanisms
3. Results and Discussion
3.1. Fouling Tendency with Respect to Dextran Size and Filtration Cycle
3.2. Comparision of the Degress of Fouling Using Flux Nomalization for Different Sizes of Dextran
3.3. Analysis Fouling Mechanisms for Different Sizes of Dextran Using Hermia Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daufin, G.; Escudier, J.-P.; Carrere, H.; Bérot, S.; Fillaudeau, L.; Decloux, M. Recent and Emerging Applications of Membrane Processes in the Food and Dairy Industry. Food Bioprod. Process. 2001, 79, 89–102. [Google Scholar] [CrossRef]
- Porretta, S.; Carpi, G.; Dall’Aglio, G.; Ghizzoni, C. Use of ultrafiltration for preparing improved tomato pulp. Int. J. Food Sci. Technol. 2007, 27, 427–433. [Google Scholar] [CrossRef]
- Vaillant, F. Crossflow microfltration of passion fruit juice after partial enzymatic liquefaction. J. Food Eng. 1999, 42, 215–224. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification. J. Am. Chem. Soc. 2011, 12, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, V.; Marczak, L.D.F.; Tessaro, I.C. Membrane concentration of liquid foods by forward osmosis: Process and quality view. J. Food Eng. 2012, 111, 483–489. [Google Scholar] [CrossRef]
- Hirano, R.; Namazuda, K.; Suemitsu, J.; Harashima, T.; Hirata, N. Plasma separation using a membrane. Transfus. Apher. Sci. 2017, 56, 649–653. [Google Scholar] [CrossRef]
- Poerio, T.; Piacentini, E.; Mazzei, R. Membrane Processes for Microplastic Removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef] [Green Version]
- Jiao, B. Recent advances on membrane processes for the concentration of fruit juices: A review. J. Food Eng. 2004, 63, 303–324. [Google Scholar] [CrossRef]
- Zheng, X. Effect of slow sand filtration of treated wastewater as pre-treatment to UF. Desalination 2009, 249, 591–595. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Tong, X.; Zhao, X.; Wu, Y.; Bai, Y.; Ikuno, N.; Ishii, K.; Hu, H. The molecular structures of polysaccharides affect their reverse osmosis membrane fouling behaviors. J. Membr. Sci. 2021, 625, 118984. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Mora, F.; Perez, K.; Quezada, C.; Herrera, C.; Cassano, A.; Ruby-Figueroa, R. Impact of Membrane Pore Size on the Clarification Performance of Grape Marc Extract by Microfiltration. Membranes 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryanti, N.; Nafiunisa, A.; Kusworo, T.; Wardhani, D. Micellar-Enhanced Ultrafiltration Using a Plant-Derived Surfactant for Dye Separation in Wastewater Treatment. Membranes 2020, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Listiarini, K.; Chun, W.; Sun, D.D.; Leckie, J.O. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. J. Membr. Sci. 2009, 344, 244–251. [Google Scholar] [CrossRef]
- Carbonell-Alcaina, C.; Corbatón-Báguena, M.-J.; Álvarez-Blanco, S.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Pastor-Alcañiz, L. Determination of fouling mechanisms in polymeric ultrafiltration membranes using residual brines from table olive storage wastewaters as feed. J. Food Eng. 2016, 187, 14–23. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Chan, C.-S.; Tung, K.-L. Effect of backwash on the performance of submerged membrane filtration. J. Membr. Sci. 2009, 330, 349–356. [Google Scholar] [CrossRef]
- Shen, L.; Lei, Q.; Chen, J.-R.; Hong, H.-C.; He, Y.; Lin, H. Membrane fouling in a submerged membrane bioreactor: Impacts of floc size. Chem. Eng. J. 2015, 269, 328–334. [Google Scholar] [CrossRef]
- Cogan, N.G. Optimal backwashing in dead-end bacterial microfiltration with irreversible attachment mediated by extracel-lular polymeric substances production. J. Membr. Sci. 2016, 520, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, A.Y.; Cheng, Y.-H.; Paul, D.R.; Field, R.W.; Freeman, B.D. Fouling mechanisms in constant flux crossflow ultrafiltration. J. Membr. Sci. 2019, 574, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, Z.; Yin, X.; Tian, L. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. J. Membr. Sci. 2008, 325, 238–244. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Ernst, M.; Cui, F.; Jekel, M. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. J. Membr. Sci. 2013, 446, 1–9. [Google Scholar] [CrossRef]
- Ofir, E.; Oren, Y.; Adin, A. Electroflocculation: The effect of zeta-potential on particle size. Desalination 2007, 204, 33–38. [Google Scholar] [CrossRef]
- Kim, P. Comparative analysis of fouling mechanisms of ceramic and polymeric micro-filtration membrane for algae harvesting. Desalination Water Treat 2020, 173, 12–20. [Google Scholar] [CrossRef]
- Meng, X.; Luosang, D.; Meng, S.; Wang, R.; Fan, W.; Liang, D.; Li, X.; Zhao, Q.; Yang, L. The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere 2021, 268, 129364. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Fan, W.; Li, X.; Liu, Y.; Liang, D.; Liu, X. Intermolecular interactions of polysaccharides in membrane fouling during microfiltration. Water Res. 2018, 143, 38–46. [Google Scholar] [CrossRef]
- Promraksa, A.; Flood, C.; Schneider, P.; Flood, A. Dextran eparation from synthetic raw sugar solutions by ultrafiltration, and analysis of membranefouling mechanisms. Suranaree J. Sci. Technol. 2016, 23, 389–400. [Google Scholar]
- Meng, S.; Liu, H.; Zhao, Q.; Shen, N.; Zhang, M. Filtration Performances of Different Polysaccharides in Microfiltration Process. Processes 2019, 7, 897. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Chiang, Y. Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Sep. Purif. Technol. 2014, 125, 74–82. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Product name | Dextran |
Molecular weight (Da) | 6000; 10,000; 100,000 |
Appearance (Color) | White |
Appearance (Form) | Powder |
Loss on drying (%) | ≤10 |
Parameters | Values |
---|---|
Hollow fiber membrane size (mm) | 0.6 (ID) |
Effective membrane area (m2) | 34 |
Molecular weight cutoff (Da) | 6000 |
Membrane type | Hollow fiber |
Membrane material | Polysulphone |
pH range | 1–14 |
Complete Blocking | Standard Pore Blocking | Intermediate Pore Blocking | Cake Filtration | |
---|---|---|---|---|
100,000 Da (first cycle) | 0.8659 | 0.8438 | 0.9024 | 0.9284 |
100,000 Da (fourth cycle) | 0.8895 | 0.8686 | 0.9252 | 0.9519 |
10,000 Da (first cycle) | 0.8624 | 0.85885 | 0.8698 | 0.8767 |
10,000 Da (fourth cycle) | 0.6397 | 0.6349 | 0.6493 | 0.6587 |
6000 Da (first cycle) | 0.2229 | 0.2224 | 0.2234 | 0.2234 |
6000 Da (fourth cycle) | 0.8878 | 0.8828 | 0.8971 | 0.9057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, P.; Kim, H.; Oh, H.; Kang, J.-s.; Lee, S.; Park, K. Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms. Membranes 2022, 12, 142. https://doi.org/10.3390/membranes12020142
Kim P, Kim H, Oh H, Kang J-s, Lee S, Park K. Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms. Membranes. 2022; 12(2):142. https://doi.org/10.3390/membranes12020142
Chicago/Turabian StyleKim, Pooreum, Hyungsoo Kim, Heekyong Oh, Joon-seok Kang, Sangyoup Lee, and Kitae Park. 2022. "Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms" Membranes 12, no. 2: 142. https://doi.org/10.3390/membranes12020142
APA StyleKim, P., Kim, H., Oh, H., Kang, J. -s., Lee, S., & Park, K. (2022). Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms. Membranes, 12(2), 142. https://doi.org/10.3390/membranes12020142