Platelet Membrane: An Outstanding Factor in Cancer Metastasis
Abstract
:1. Overview
2. Platelets
2.1. Platelet Granules
2.2. Mitochondria
2.3. Filopodia and Lamellipodia
3. Platelet Membrane
3.1. Lipid Composition
- (1)
- Watanabe et al. carried out a lipidomic study in 1998 [95]. They reported that the primary saturated fatty acids in the platelet plasma membrane are palmitic acid (17%) and stearic acid (21.3%), while the primary unsaturated fatty acids are arachidonic acid (22%), oleic acid (17.1%), linoleic acid (6%), docosahexaenoic acid (2.5%), and eicosapentaenoic acid (2%). The authors concluded that the presence of polyunsaturated fatty acids (PUFAs) in the phospholipids of the plasma membrane reduces the bending stiffness of the membrane and makes it more flexible by reducing the energy required for deformation and fission. PUFAs are related to biological functions in both healthy and diseased organisms, especially in cardiovascular diseases [95].
- (2)
- (3)
- Lagoutte-Renosi et al. [94] carried out a lipidomics study on resting platelet membranes. Their results showed that the membranes are constituted mainly by phosphatidylcholines (35.2 ± 0.8%), cholesterol (28.35 ± 0.7%), ether-linked phosphatidylethanolamines (10.40 ± 0.2%), sphingomyelins (7.26 ± 0.3%), phosphatidylserine (6.06 ± 0.1%), phosphatidylethanolamines (6.41 ± 0.1%), phosphatidylinositols (2.41 ± 0.03%), and ether-linked phosphatidylcholine (1.84 ± 0.04%) [94].
- (4)
- Cell dynamics studies have shown that the lipid composition in the platelet membrane and, therefore, its access to receptors, is affected by pathologies and certain drugs. In particular, Lagoutte-Renosi et al. [94] reported that ticagrelor is a compound that decreases the fluidity of the platelet membrane by inducing a general stiffness in it. In a lipidomics study, they subjected platelets to previous treatment with ADP and ticagrelor in concentrations of 20 µM. The authors observed an increase in cholesterol from 28.4 ± 0.7% to 30.6 ± 0.5% in the groups that received the treatment in the presence of ticagrelor. When ADP was administered, the reported cholesterol was 27.9 ± 1.2%. In the groups treated with ticagrelor, the phosphatidylcholine content decreased from 35.2 ± 0.8% (the concentration found in the control groups) to 31.7 ± 1.8% [94].
3.2. Lipid Rafts and Signaling
3.3. Platelet Membrane Proteins and Receptors
- (1)
- Integrins, whose primary function is to maintain platelet adhesion and aggregation during the vascular injury repair response. According to Felding-Habermann et al. [117], integrin αvβ3 supports the breast cancer metastatic phenotype, as this integrin is up-regulated in invasive tumors and distant metastases. They observed that breast cancer cells could exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3.
- (2)
- P-selectin is an activated platelet receptor that can bind to several human cancer cells such as colon cancer cells, lung cancer cells, breast cancer cells, and gastric cancer cells. P-selectin plays an essential role in metastasis. For example, platelets expressing P-selectin interact with cancer cells in TME and supply various growth factors and mitogens, including platelet growth factor 4 [121].
- (3)
- PAR-1 belongs to protease-activated receptor family-related G protein-coupled receptors activated by the cleavage of part of their extracellular domain. They are highly expressed in platelets, and it has been recently reported that their overexpression is related to invasive and metastatic tumors [122].Boire et al. [122] demonstrated that PAR-1 is required and sufficient to promote the growth and invasion of breast carcinoma cells in a xenograft model. Furthermore, they demonstrated that MMP-1 is an agonist of PAR1, cleaving the receptor at the proper site to generate PAR1-dependent Ca2+ signals and migration, so MMP-1 in the stromal-tumor microenvironment can alter the behavior of cancer cells through PAR1 to promote cell migration and invasion [122]
- (4)
- CLEC-2 is another platelet receptor involved in metastasis. Is a transmembrane glycoprotein with the Hemi ITAM (hemITAM) YxxL motif in its cytoplasmatic tail, tyrosine-based activation motifs (ITAM), and hemITAM being very useful in platelet-assisted metastasis [123].
4. Platelet Activation
5. Platelet Extracellular Vesicles
6. Cancer Cells
7. Contribution of Platelets to Cancer Development
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | adenosine diphosphate |
CAF | fibroblasts associated with cancer |
CTC | circulating tumor cells |
DMS | demarcation membrane system |
DTS | dense tubular system |
ECM | extracellular matrix |
EMT | epithelial mesenchymal transition |
ESAM | endothelial cell-selective adhesion molecule |
GP1b | Glycoprotein Ib |
ITAM | immunoreceptor tyrosine-based activation motifs |
ITIM | immunoreceptor tyrosine-based inhibitory motif |
LPA | lysophosphatidic acid |
LRR | Leucine-rich repeat family |
LRs | lipid rafts |
miRNA | microRNAs |
MMP | metalloproteinases |
mRNA | messenger ribonucleic acid |
MV | Microvesicles |
NK | natural killer cells |
NO | nitric oxide |
OCS | open canalicular system |
PMVs | Platelet-derived microvesicles |
PUFAs | polyunsaturated fatty acids |
TME | tumor microenvironment |
TNF | tumor necrosis factor |
vWF | von Willebrand factor |
References
- Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.J.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: A Meeting Point for Lipids, Proteins and Therapies. J. Cell. Mol. Med. 2008, 12, 829–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolson, G.L. The Fluid—Mosaic Model of Membrane Structure: Still Relevant to Understanding the Structure, Function and Dynamics of Biological Membranes after More than 40 years. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1451–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.A.; Halverson-Tamboli, R.A.; Rasenick, M.M. Lipid Raft Microdomains and Neurotransmitter Signalling. Nat. Rev. Neurosci. 2007, 8, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Shoham, T.; Rajapaksa, R.; Kuo, C.-C.; Haimovich, J.; Levy, S. Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments. Mol. Cell. Biol. 2006, 26, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Chugh, P.; Paluch, E.K. The Actin Cortex at a Glance. J. Cell. Sci. 2018, 131, jcs186254. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.I.; Stegmayr, J.; Grant, O.C.; Yang, Z.; Nilsson, U.J.; Boos, I.; Carlsson, M.C.; Woods, R.J.; Unverzagt, C.; Leffler, H.; et al. Galectin Binding to Cells and Glycoproteins with Genetically Modified Glycosylation Reveals Galectin–Glycan Specificities in a Natural Context. J. Biol. Chem. 2018, 293, 20249–20262. [Google Scholar] [CrossRef] [Green Version]
- Andrade, D.M.; Clausen, M.P.; Keller, J.; Mueller, V.; Wu, C.; Bear, J.E.; Hell, S.W.; Lagerholm, B.C.; Eggeling, C. Cortical Actin Networks Induce Spatio-Temporal Confinement of Phospholipids in the Plasma Membrane—A Minimally Invasive Investigation by STED-FCS. Sci. Rep. 2015, 5, 11454. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, K.; Liu, P.; Lagerholm, B.C. The Lateral Organization and Mobility of Plasma Membrane Components. Cell 2019, 177, 806–819. [Google Scholar] [CrossRef]
- Uray, I.P.; Uray, K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int. J. Mol. Sci. 2021, 22, 11566. [Google Scholar] [CrossRef]
- Hofmann, C.; Obermeier, F.; Artinger, M.; Hausmann, M.; Falk, W.; Schoelmerich, J.; Rogler, G.; Grossmann, J. Cell-Cell Contacts Prevent Anoikis in Primary Human Colonic Epithelial Cells. Gastroenterology 2007, 132, 587–600. [Google Scholar] [CrossRef]
- Paoli, P.; Giannoni, E.; Chiarugi, P. Anoikis Molecular Pathways and Its Role in Cancer Progression. BBA—Mol. Cell Res. 2013, 1833, 3481–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haemmerle, M.; Taylor, M.L.; Gutschner, T.; Pradeep, S.; Cho, M.S.; Sheng, J.; Lyons, Y.M.; Nagaraja, A.S.; Dood, R.L.; Wen, Y.; et al. Platelets Reduce Anoikis and Promote Metastasis by Activating YAP1 Signaling. Nat. Commun. 2017, 8, 310. [Google Scholar] [CrossRef]
- Kudo-Saito, C.; Shirako, H.; Takeuchi, T.; Kawakami, Y. Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell 2009, 15, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Fukumura, D.; Jain, R.K. Tumor Microvasculature and Microenvironment: Targets for Anti-Angiogenesis and Normalization. Microvasc. Res. 2007, 74, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza-Almanza, G.; Burciaga-Hernández, L.; Maldonado, V.; Melendez-Zajgla, J.; Olmos, J. Role of Platelets and Breast Cancer Stem Cells in Metastasis. World J. Stem Cells 2020, 12, 1237–1254. [Google Scholar] [CrossRef] [PubMed]
- Taftaf, R.; Liu, X.; Singh, S.; Jia, Y.; Dashzeveg, N.K.; Hoffmann, A.D.; El-Shennawy, L.; Ramos, E.K.; Adorno-Cruz, V.; Schuster, E.J.; et al. ICAM1 Initiates CTC Cluster Formation and Trans-Endothelial Migration in Lung Metastasis of Breast Cancer. Nat. Commun. 2021, 12, 4867. [Google Scholar] [CrossRef]
- Patel, S.R.; Hartwig, J.H.; Italiano, J.E. The Biogenesis of Platelets from Megakaryocyte Proplatelets. J. Clin. Investig. 2005, 115, 3348–3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Storrie, B. The Cellular Basis of Platelet Secretion: Emerging Structure/Function Relationships. Platelets 2017, 28, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreau, L.H.; Duchez, A.-C.; Cloutier, N.; Soulet, D.; Martin, N.; Bollinger, J.; Paré, A.; Rousseau, M.; Naika, G.S.; Lévesque, T.; et al. Platelets Release Mitochondria Serving as Substrate for Bactericidal Group IIA-Secreted Phospholipase A2 to Promote Inflammation. Blood 2014, 124, 2173–2183. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Torre, S.R.; Trautmann, A. Rapid Refilling of Ca2+ Stores in Macrophages Stimulated by ATP Involves the Sequential Activation of Phospholipase D and Protein Kinase C. Pflüg Arch. Eur. J. Physiol. 1995, 430, 230–237. [Google Scholar] [CrossRef]
- Paul, B.Z.S.; Daniel, J.L.; Kunapuli, S.P. Platelet Shape Change Is Mediated by Both Calcium-Dependent and-Independent Signaling Pathways. J. Biol. Chem. 1999, 274, 28293–28300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, E.-K.; Park, H.; Noh, J.-Y.; Lim, K.-M.; Chung, J.-H. Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs. Biomol. Ther. 2017, 25, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, P.; Harper, A.G.S. Human Platelets Use a Cytosolic Ca2+ Nanodomain to Activate Ca2+-Dependent Shape Change Independently of Platelet Aggregation. Cell Calcium 2020, 90, 102248. [Google Scholar] [CrossRef] [PubMed]
- Marinko, J.T.; Huang, H.; Penn, W.D.; Capra, J.A.; Schlebach, J.P.; Sanders, C.R. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem. Rev. 2019, 119, 5537–5606. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ibarra, E.L.; Ayala-Luján, J.L.; Mendoza-Almanza, B.; González-Curiel, I.; Godina-González, S.; Hernández-Barrales, M.; Mendoza-Almanza, G. The Platelet Role in Severe and Fatal Forms of COVID-19. Curr. Mol. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, A.; Langer, H.F. Crosstalk between Platelets and the Complement System in Immune Protection and Disease. Thromb. Haemost. 2013, 110, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Tuccinardi, D.; Pieralice, S.; Giannone, S.; Carpenito, M.; Monte, L.; Watanabe, M.; Cavallari, I.; Maddaloni, E.; Ussia, G.P.; et al. Platelet Effects of Anti-Diabetic Therapies: New Perspectives in the Management of Patients with Diabetes and Cardiovascular Disease. Front. Pharmacol. 2021, 12, 670155. [Google Scholar] [CrossRef]
- Camilletti, A.; Moretti, N.; Giacchetti, G.; Faloia, E.; Martarelli, D.; Mantero, F.; Mazzanti, L. Decreased Nitric Oxide Levels and Increased Calcium Content in Platelets of Hypertensive Patients. Am. J. Hypertens. 2001, 14, 382–386. [Google Scholar] [CrossRef]
- Plantureux, L.; Mège, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C.; et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020, 80, 291–303. [Google Scholar] [CrossRef]
- Labelle, M.; Begum, S.; Hynes, R.O. Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. Cancer Cell 2011, 20, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet Activation and Platelet-Monocyte Aggregate Formation Trigger Tissue Factor Expression in Patients with Severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- French, S.L.; Vijey, P.; Karhohs, K.W.; Wilkie, A.R.; Horin, L.J.; Ray, A.; Posorske, B.; Carpenter, A.E.; Machlus, K.R.; Italiano, J.E. High-content, Label-free Analysis of Proplatelet Production from Megakaryocytes. J. Thromb. Haemost. 2020, 18, 2701–2711. [Google Scholar] [CrossRef] [PubMed]
- Avanzi, M.P.; Izak, M.; Oluwadara, O.E.; Mitchell, W.B. Actin Inhibition Increases Megakaryocyte Proplatelet Formation through an Apoptosis-Dependent Mechanism. PLoS ONE 2015, 10, e0125057. [Google Scholar] [CrossRef]
- Antkowiak, A.; Viaud, J.; Severin, S.; Zanoun, M.; Ceccato, L.; Chicanne, G.; Strassel, C.; Eckly, A.; Leon, C.; Gachet, C.; et al. Cdc42-Dependent F-Actin Dynamics Drive Structuration of the Demarcation Membrane System in Megakaryocytes. J. Thromb. Haemost. 2016, 14, 1268–1284. [Google Scholar] [CrossRef]
- Schulze, H.; Korpal, M.; Hurov, J.; Kim, S.-W.; Zhang, J.; Cantley, L.C.; Graf, T.; Shivdasani, R.A. Characterization of the Megakaryocyte Demarcation Membrane System and Its Role in Thrombopoiesis. Blood 2006, 107, 3868–3875. [Google Scholar] [CrossRef] [Green Version]
- Sveshnikova, A.N.; Ataullakhanov, F.I.; Panteleev, M.A. Compartmentalized Calcium Signaling Triggers Subpopulation Formation upon Platelet Activation through PAR1. Mol. BioSyst. 2015, 11, 1052–1060. [Google Scholar] [CrossRef]
- Jardín, I.; López, J.J.; Pariente, J.A.; Salido, G.M.; Rosado, J.A. Intracellular Calcium Release from Human Platelets: Different Messengers for Multiple Stores. Trends Cardiovasc. Med. 2008, 18, 57–61. [Google Scholar] [CrossRef]
- Bornert, A.; Boscher, J.; Pertuy, F.; Eckly, A.; Stegner, D.; Strassel, C.; Gachet, C.; Lanza, F.; Léon, C. Cytoskeletal-Based Mechanisms Differently Regulate in vivo and in vitro Proplatelet Formation. Haematologica 2020, 106, 1368–1380. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Zamora, E.J.; Ferrer-Marín, F.; Rivera, J.; Teruel-Montoya, R. Tubulin in Platelets: When the Shape Matters. Int. J. Mol. Sci. 2019, 20, 3484. [Google Scholar] [CrossRef] [Green Version]
- Saarikangas, J.; Zhao, H.; Lappalainen, P. Regulation of the Actin Cytoskeleton-Plasma Membrane Interplay by Phosphoinositides. Physiol. Rev. 2010, 90, 259–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisinger, F.; Patzelt, J.; Langer, H.F. The Platelet Response to Tissue Injury. Front. Med. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryckaert, M.; Rosa, J.-P.; Denis, C.V.; Lenting, P.J. Of von Willebrand Factor and Platelets. Cell. Mol. Life Sci. 2015, 72, 307–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Lai, R.; Zhang, Y.; Shi, D. The Prognostic Value of Reticulated Platelets in Patients With Coronary Artery Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2020, 7, 578041. [Google Scholar] [CrossRef] [PubMed]
- Blair, P.; Flaumenhaft, R. Platelet α-Granules: Basic Biology and Clinical Correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Pokrovskaya, I.D.; Aronova, M.A.; Kamykowski, J.A.; Prince, A.A.; Hoyne, J.D.; Calco, G.N.; Kuo, B.C.; He, Q.; Leapman, R.D.; Storrie, B. STEM Tomography Reveals That the Canalicular System and α-Granules Remain Separate Compartments during Early Secretion Stages in Blood Platelets. J. Thromb. Haemost. 2016, 14, 572–584. [Google Scholar] [CrossRef]
- Lambert, M.P.; Meng, R.; Xiao, L.; Harper, D.C.; Marks, M.S.; Kowalska, M.A.; Poncz, M. Intramedullary Megakaryocytes Internalize Released Platelet Factor 4 and Store It in Alpha Granules. J. Thromb. Haemost. 2015, 13, 1888–1899. [Google Scholar] [CrossRef]
- Parker, D.; Tasneem, S.; Farndale, R.; Bihan, D.; Sadler, J.; Sebastian, S.; de Groot, P.; Hayward, C. The Functions of the A1A2A3 Domains in von Willebrand Factor Include Multimerin 1 Binding. Thromb. Haemost. 2016, 116, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Lo, R.W.; Li, L.; Pluthero, F.G.; Leung, R.; Eto, K.; Kahr, W.H.A. The Endoplasmic Reticulum Protein SEC22B Interacts with NBEAL2 and Is Required for Megakaryocyte α-Granule Biogenesis. Blood 2020, 136, 715–725. [Google Scholar] [CrossRef]
- Behnke, O. Degrading and Non-Degrading Pathways in Fluid-Phase (Non-Adsorptive) Endocytosis in Human Blood Platelets. J. Submicrosc. Cytol. Pathol. 1992, 24, 169–178. [Google Scholar]
- Deppermann, C.; Kubes, P. Start a Fire, Kill the Bug: The Role of Platelets in Inflammation and Infection. Innate Immun. 2018, 24, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Nurden, A.T. The Biology of the Platelet with Special Reference to Inflammation Wound Healing and Immunity. Front. Biosci. 2018, 23, 4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, S.R.; Klement, G.L. Isolation and Proteomic Analysis of Platelets by SELDI-TOF MS. Methods. Mol. Biol. 2012, 818, 153–170. [Google Scholar] [PubMed] [Green Version]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Miao, X.; Luan, Y.; Zhu, L.; Kong, F.; Lu, Q.; Pernow, J.; Nilsson, G.; Li, N. PAR1-Stimulated Platelet Releasate Promotes Angiogenic Activities of Endothelial Progenitor Cells More Potently than PAR4-Stimulated Platelet Releasate. J. Thromb. Haemost. 2015, 13, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.E.; Levis, J.E.; Schneider, D.J.; Bambace, N.M.; Sharma, D.; Lal, I.; Wood, M.E.; Muss, H.B. Platelet Phenotype Changes Associated with Breast Cancer and Its Treatment. Platelets 2016, 27, 703–711. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, J. Platelet Generation in Vivo and in Vitro. SpringerPlus 2016, 5, 787. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.G.; Sandim, V.; Almeida, V.H.; Rondon, A.M.R.; Succar, B.B.; Hottz, E.D.; Leal, A.C.; Verçoza, B.R.F.; Rodrigues, J.C.F.; Bozza, P.T.; et al. Breast-Cancer Extracellular Vesicles Induce Platelet Activation and Aggregation by Tissue Factor-Independent and -Dependent Mechanisms. Thromb. Res. 2017, 159, 24–32. [Google Scholar] [CrossRef]
- Hanby, H.A.; Bao, J.; Noh, J.-Y.; Jarocha, D.; Poncz, M.; Weiss, M.J.; Marks, M.S. Platelet Dense Granules Begin to Selectively Accumulate Mepacrine during Proplatelet Formation. Blood Adv. 2017, 1, 1478–1490. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Luan, Y.; Miao, X.; Sun, C.; Li, K.; Huang, Z.; Xu, D.; Zhang, M.; Kong, F.; Li, N. Platelet Releasate Promotes Breast Cancer Growth and Angiogenesis via VEGF–Integrin Cooperative Signalling. Br. J. Cancer 2017, 117, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Menter, D.G.; Kopetz, S.; Hawk, E.; Sood, A.K.; Loree, J.M.; Gresele, P.; Honn, K.V. Platelet “First Responders” in Wound Response, Cancer, and Metastasis. Cancer Metast. Rev. 2017, 36, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Gianazza, E.; Brioschi, M.; Baetta, R.; Mallia, A.; Banfi, C.; Tremoli, E. Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int. J. Mol. Sci. 2020, 21, 4541. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, Y.; Li, W. Sorting Machineries: How Platelet-Dense Granules Differ from α-Granules. Biosci. Rep. 2018, 38, BSR20180458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentfeld-Barker, M.E.; Bainton, D.F. Identification of Primary Lysosomes in Human Megakaryocytes and Platelets. Blood 1982, 59, 472–481. [Google Scholar] [CrossRef]
- Eskelinen, E.-L.; Tanaka, Y.; Saftig, P. At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends Cell Biol. 2003, 13, 137–145. [Google Scholar] [CrossRef]
- Tomlinson, M.G. Platelet Tetraspanins: Small but Interesting. J. Thromb. Haemost. 2009, 7, 2070–2073. [Google Scholar] [CrossRef]
- Leoncini, G.; Balestrero, F.; Maresca, M. Lysosomal Enzymes in Human Platelets. Cell Biochem. Funct. 1985, 3, 121–125. [Google Scholar] [CrossRef]
- Rendu, F.; Brohard-Bohn, B. The Platelet Release Reaction: Granules’ Constituents, Secretion and Functions. Platelets 2001, 12, 261–273. [Google Scholar] [CrossRef]
- Melchinger, H.; Jain, K.; Tyagi, T.; Hwa, J. Role of Platelet Mitochondria: Life in a Nucleus-Free Zone. Front. Cardiovasc. Med. 2019, 6, 153. [Google Scholar] [CrossRef]
- Levoux, J.; Prola, A.; Lafuste, P.; Gervais, M.; Chevallier, N.; Koumaiha, Z.; Kefi, K.; Braud, L.; Schmitt, A.; Yacia, A.; et al. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab. 2021, 33, 283–299.e9. [Google Scholar] [CrossRef] [PubMed]
- Miliotis, S.; Nicolalde, B.; Ortega, M.; Yepez, J.; Caicedo, A. Forms of Extracellular Mitochondria and Their Impact in Health. Mitochondrion 2019, 48, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Amari, L.; Germain, M. Mitochondrial Extracellular Vesicles—Origins and Roles. Front. Mol. Neurosci. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-L.; Zou, K.; Chen, Y.; Wu, L.-J.; Cao, J.; Xiong, X.-Y.; Wang, L.; Cheng, X.-S.; Xiao, Q.-Z.; Yang, R.-Q. Functional Role and Molecular Mechanisms Underlying Prohibitin 2 in Platelet Mitophagy and Activation. Mol. Med. Rep. 2021, 23, 384. [Google Scholar] [CrossRef]
- Chen, K.; Dai, H.; Yuan, J.; Chen, J.; Lin, L.; Zhang, W.; Wang, L.; Zhang, J.; Li, K.; He, Y. Optineurin-Mediated Mitophagy Protects Renal Tubular Epithelial Cells against Accelerated Senescence in Diabetic Nephropathy. Cell Death Dis. 2018, 9, 105. [Google Scholar] [CrossRef]
- Bhansali, S.; Bhansali, A.; Dhawan, V. Metformin Promotes Mitophagy in Mononuclear Cells: A Potential in Vitro Model for Unraveling Metformin’s Mechanism of Action. Ann. N. Y. Acad. Sci. 2020, 1463, 23–36. [Google Scholar] [CrossRef]
- Lauffenburger, D.A.; Horwitz, A.F. Cell Migration: A Physically Integrated Molecular Process. Cell 1996, 84, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Bearer, E.L.; Prakash, J.M.; Li, Z. Actin Dynamics in Platelets. Int. Rev. Cytol. 2002, 217, 137–182. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.A.; Bramble, J.P.; Yeung, C.L.; Mendes, P.M.; Machesky, L.M. Arp2/3 Complex Activity in Filopodia of Spreading Cells. BMC Cell Biol. 2008, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Innocenti, M. New Insights into the Formation and the Function of Lamellipodia and Ruffles in Mesenchymal Cell Migration. Cell Adh. Migr. 2018, 12, 401–416. [Google Scholar] [CrossRef]
- Padrick, S.B.; Rosen, M.K. Physical Mechanisms of Signal Integration by WASP Family Proteins. Ann. Rev. Biochem. 2010, 79, 707–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Weston, T.A.; He, C.; Jung, R.S.; Heizer, P.J.; Young, B.D.; Tu, Y.; Tontonoz, P.; Wohlschlegel, J.A.; Jiang, H.; et al. Release of Cholesterol-Rich Particles from the Macrophage Plasma Membrane during Movement of Filopodia and Lamellipodia. eLife 2019, 8, e50231. [Google Scholar] [CrossRef] [PubMed]
- Laude, A.J.; Prior, I.A. Plasma Membrane Microdomains: Organization, Function and Trafficking (Review). Mol. Membr. Biol. 2004, 21, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Mammadova-Bach, E.; Gil-Pulido, J.; Sarukhanyan, E.; Burkard, P.; Shityakov, S.; Schonhart, C.; Stegner, D.; Remer, K.; Nurden, P.; Nurden, A.T.; et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell–derived galectin-3. Blood 2020, 135, 1146–1160. [Google Scholar] [CrossRef] [PubMed]
- Neumüller, J.; Ellinger, A.; Wagner, T. Transmission Electron Microscopy of Platelets FROM Apheresis and Buffy-Coat-Derived Platelet Concentrates. In The Transmission Electron Microscope—Theory and Applications; InTech: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Radmacher, M.; Gaub, H.E. Granula Motion and Membrane Spreading during Activation of Human Platelets Imaged by Atomic Force Microscopy. Biophys. J. 1994, 66, 1328–1334. [Google Scholar] [CrossRef] [Green Version]
- Thon, J.N.; Italiano, J.E. Platelets: Production, Morphology and Ultrastructure. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–22. [Google Scholar] [CrossRef]
- Erlandsen, S.L.; Bittermann, A.G.; White, J.; Leith, A.; Marko, M. High-Resolution CryoFESEM of Individual Cell Adhesion Molecules (CAMs) in the Glycocalyx of Human Platelets: Detection of P-Selectin (CD62P), GPI-IX Complex (CD42a/CD42bα,Bβ), and Integrin GPIIbIIIa (CD41/CD61) by Immunogold Labeling and Stereo Imaging. J. Histochem. Cytochem. 2001, 49, 809–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, G.J.; Wegner, J. Endothelial Glycocalyx and Cardiopulmonary Bypass. J. Extra Corpor. Technol. 2017, 49, 174–181. [Google Scholar] [PubMed]
- Bodin, S.; Tronchère, H.; Payrastre, B. Lipid Rafts Are Critical Membrane Domains in Blood Platelet Activation Processes. BBA Biomembr. 2003, 1610, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, I.; Barrachina, M.N.; Hermida-Nogueira, L.; Casas, V.; Eble, J.A.; Carrascal, M.; Abián, J.; García, Á. Platelet Membrane Lipid Rafts Protein Composition Varies Following GPVI and CLEC-2 Receptors Activation. J. Proteom. 2019, 195, 88–97. [Google Scholar] [CrossRef]
- Komatsuya, K.; Kaneko, K.; Kasahara, K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int. J. Mol. Sci. 2020, 21, 5539. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Murphy, R.C.; Watson, S.P. Platelet Lipidomics: A Modern Day Perspective on Lipid Discovery and Characterization in Platelets. Circ. Res. 2014, 114, 1185–1203. [Google Scholar] [CrossRef] [PubMed]
- Lagoutte-Renosi, J.; Allemand, F.; Ramseyer, C.; Rabani, V.; Davani, S. Influence of Antiplatelet Agents on the Lipid Composition of Platelet Plasma Membrane: A Lipidomics Approach with Ticagrelor and Its Active Metabolite. Int. J. Mol. Sci. 2021, 22, 1432. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Shiraishi, K.; Itakura, M.; Matsuzaki, S. Relationship between Platelet Membrane Lipid Compositions and Platelet Aggregability in Alcoholic Liver Disease. Alcohol. Clin. Exp. Res. 1998, 22, 97S–102S. [Google Scholar] [CrossRef] [PubMed]
- Skeaff, C.M.; Holub, B.J. Altered Phospholipid Composition of Plasma Membranes from Thrombin-Stimulated Human Platelets. BBA Lipid Metab. 1985, 834, 164–171. [Google Scholar] [CrossRef]
- Watała, C.; Gwoździński, K. Effect of Aspirin on Conformation and Dynamics of Membrane Proteins in Platelets and Erythrocytes. Biochem. Pharmacol. 1993, 45, 1343–1349. [Google Scholar] [CrossRef]
- Osamah, H.; Mira, R.; Sorina, S.; Shlomo, K.; Michael, A. Reduced Platelet Aggregation after Fluvastatin Therapy Is Associated with Altered Platelet Lipid Composition and Drug Binding to the Platelets. Br. J. Clin. Pharm. 1997, 44, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Ibarguren, M.; López, D.J.; Escribá, P.V. The Effect of Natural and Synthetic Fatty Acids on Membrane Structure, Microdomain Organization, Cellular Functions and Human Health. BBA Biomembr. 2014, 1838, 1518–1528. [Google Scholar] [CrossRef] [Green Version]
- Lorent, J.H.; Levental, K.R.; Ganesan, L.; Rivera-Longsworth, G.; Sezgin, E.; Doktorova, M.; Lyman, E.; Levental, I. Plasma Membranes Are Asymmetric in Lipid Unsaturation, Packing and Protein Shape. Nat. Chem. Biol. 2020, 16, 644–652. [Google Scholar] [CrossRef]
- Cerecedo, D.; Martínez-Vieyra, I.; Sosa-Peinado, A.; Cornejo-Garrido, J.; Ordaz-Pichardo, C.; Benítez-Cardoza, C. Alterations in Plasma Membrane Promote Overexpression and Increase of Sodium Influx through Epithelial Sodium Channel in Hypertensive Platelets. BBA Biomembr. 2016, 1858, 1891–1903. [Google Scholar] [CrossRef]
- Prisco, D.; Tufano, A.; Cenci, C.; Pignatelli, P.; Santilli, F.; di Minno, G.; Perticone, F. Position Paper of the Italian Society of Internal Medicine (SIMI) on Prophylaxis and Treatment of Venous Thromboembolism in Patients with Cancer. Int. Emerg. Med. 2019, 14, 21–38. [Google Scholar] [CrossRef]
- Gasperi, V.; Vangapandu, C.; Savini, I.; Ventimiglia, G.; Adorno, G.; Catani, M.V. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J. Nutr. Biochem. 2019, 74, 108242. [Google Scholar] [CrossRef] [PubMed]
- Breslow, D.K.; Weissman, J.S. Membranes in Balance: Mechanisms of Sphingolipid Homeostasis. Mol. Cell 2010, 40, 267–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aittoniemi, J.; Niemelä, P.S.; Hyvönen, M.T.; Karttunen, M.; Vattulainen, I. Insight into the Putative Specific Interactions between Cholesterol, Sphingomyelin, and Palmitoyl-Oleoyl Phosphatidylcholine. Biophys. J. 2007, 92, 1125–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Simons, K.; Toomre, D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Murai, T. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration. Int. J. Cell Biol. 2012, 2012, 763283. [Google Scholar] [CrossRef] [Green Version]
- Mollinedo, F.; Gajate, C. Lipid Rafts as Signaling Hubs in Cancer Cell Survival/Death and Invasion: Implications in Tumor Progression and Therapy. J. Lipid Res. 2020, 61, 611–635. [Google Scholar] [CrossRef] [Green Version]
- Vona, R.; Iessi, E.; Matarrese, P. Role of Cholesterol and Lipid Rafts in Cancer Signaling: A Promising Therapeutic Opportunity? Front. Cell Dev. Biol. 2021, 9, 622908. [Google Scholar] [CrossRef]
- Lobingier, B.T.; Nickerson, D.P.; Lo, S.-Y.; Merz, A.J. SM Proteins Sly1 and Vps33 Co-Assemble with Sec17 and SNARE Complexes to Oppose SNARE Disassembly by Sec18. eLife 2014, 3, e02272. [Google Scholar] [CrossRef]
- Tian, X.; Teng, J.; Chen, J. New Insights Regarding SNARE Proteins in Autophagosome-Lysosome Fusion. Autophagy 2021, 17, 2680–2688. [Google Scholar] [CrossRef]
- Jena, B.P. Porosome: The Secretory Portal in Cells. Biochemistry 2009, 48, 4009–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leabu, M.; Niculite, C.M. Porosome: A Membrane Microdomain Acting as the Universal Secretory Portal in Exocytosis. Discoveries 2014, 2, e29. [Google Scholar] [CrossRef] [PubMed]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 1999, 13, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Felding-Habermann, B.; O’Toole, T.E.; Smith, J.W.; Fransvea, E.; Ruggeri, Z.M.; Ginsberg, M.H.; Hughes, P.E.; Pampori, N.; Shattil, S.J.; Saven, A.; et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 1853–1858. [Google Scholar] [CrossRef] [Green Version]
- Grossi, I.M.; Hatfield, J.S.; Fitzgerald, L.A.; Newcombe, M.; Taylor, J.D.; Honn, K.V. Role of tumor cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumor cell-platelet and tumor cell-matrix interactions. FASEB J. 1988, 2, 2385–2395. [Google Scholar] [CrossRef]
- Honn, K.V.; Chen, Y.Q.; Timar, J.; Onoda, J.M.; Hatfield, J.S.; Fligiel, S.E.; Steinert, B.W.; Diglio, C.A.; Grossi, I.M.; Nelson, K.K.; et al. αIIbβ 3 integrin expression and function in subpopulations of murine tumors. Exp. Cell Res. 1992, 201, 23–32. [Google Scholar] [CrossRef]
- Zhang, P.; Ozdemir, T.; Chung, C.Y.; Robertson, G.P.; Dong, C. Sequential Binding of αvβ3 and ICAM-1 Determines Fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. J. Immunol. 2011, 186, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Fabricius, H.-Å.; Starzonek, S.; Lange, T. The Role of Platelet Cell Surface P-Selectin for the Direct Platelet-Tumor Cell Contact During Metastasis Formation in Human Tumors. Front. Oncol. 2021, 11, 642761. [Google Scholar] [CrossRef]
- Boire, A.; Covic, L.; Agarwal, A.; Jacques, S.; Sherifi, S.; Kuliopulos, A. PAR1 Is a Matrix Metalloprotease-1 Receptor that Promotes Invasion and Tumorigenesis of Breast Cancer Cells. Cell 2005, 120, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Suzuki-Inue, K. Roles of the CLEC-2-podoplanin interaction in tumor progression. Platelets 2018, 29, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Hsieh, P.W.; Chang, Y.T.; Lu, M.H.; Huang, T.F.; Chong, K.Y.; Liao, H.R.; Cheng, J.C.; Tseng, C.P. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget 2015, 6, 42733–42748. [Google Scholar] [CrossRef] [Green Version]
- Montague, S.J.; Lim, Y.J.; Lee, W.M.; Gardiner, E.E. Imaging Platelet Processes and Function—Current and Emerging Approaches for Imaging in Vitro and in Vivo. Front. Immunol. 2020, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Lozano, M.L.; Navarro-Nunez, L.; Vicente, V. Platelet Receptors and Signaling in the Dynamics of Thrombus Formation. Haematologica 2009, 94, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Tomaiuolo, M.; Brass, L.F.; Stalker, T.J. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv. Cardiol. Clin. 2017, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Margraf, A.; Zarbock, A. Platelets in Inflammation and Resolution. J. Immunol. 2019, 203, 2357–2367. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 9760. [Google Scholar] [CrossRef]
- Portier, I.; Campbell, R.A. Role of Platelets in Detection and Regulation of Infection. Arterioscler. Thromb. Vasc. Biol. 2020, 41, 70–78. [Google Scholar] [CrossRef]
- Battinelli, E.M.; Markens, B.A.; Italiano, J.E. Release of Angiogenesis Regulatory Proteins from Platelet Alpha Granules: Modulation of Physiologic and Pathologic Angiogenesis. Blood 2011, 118, 1359–1369. [Google Scholar] [CrossRef]
- Gay, L.J.; Felding-Habermann, B. Contribution of Platelets to Tumour Metastasis. Nat. Rev. Cancer 2011, 11, 123–134. [Google Scholar] [CrossRef]
- Moebius, J.; Zahedi, R.P.; Lewandrowski, U.; Berger, C.; Walter, U.; Sickmann, A. The Human Platelet Membrane Proteome Reveals Several New Potential Membrane Proteins. Mol. Cell. Proteom. 2005, 4, 1754–1761. [Google Scholar] [CrossRef] [Green Version]
- Jakop, U.; Fuchs, B.; Süß, R.; Wibbelt, G.; Braun, B.; Müller, K.; Schiller, J. The Solubilisation of Boar Sperm Membranes by Different Detergents—A Microscopic, MALDI-TOF MS, 31P NMR and PAGE Study on Membrane Lysis, Extraction Efficiency, Lipid and Protein Composition. Lipids Health Dis. 2009, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stetsenko, A.; Guskov, A. An Overview of the Top Ten Detergents Used for Membrane Protein Crystallization. Crystals 2017, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Pollet, H.; Conrard, L.; Cloos, A.-S.; Tyteca, D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, M.I.; Krueger, L.A.; Linden, M.D.; Barnard, M.R.; Frelinger, A.L.; Michelson, A.D. Release of Soluble CD40L from Platelets Is Regulated by Glycoprotein IIb/IIIa and Actin Polymerization. J. Am. Coll. Cardiol. 2004, 43, 2319–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloui, C.; Prigent, A.; Sut, C.; Tariket, S.; Hamzeh-Cognasse, H.; Pozzetto, B.; Richard, Y.; Cognasse, F.; Laradi, S.; Garraud, O. The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion. Int. J. Mol. Sci. 2014, 15, 22342–22364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.; Gong, J.; Yang, C.; Feng, R.; Guo, F.; Sun, Y.; Chen, H. Peripheral Blood CD40–CD40L Expression in Human Breast Cancer. Ir. J. Med. Sci. 2013, 182, 719–721. [Google Scholar] [CrossRef]
- Sabrkhany, S.; Kuijpers, M.J.E.; Knol, J.C.; Olde Damink, S.W.M.; Dingemans, A.-M.C.; Verheul, H.M.; Piersma, S.R.; Pham, T.V.; Griffioen, A.W.; oude Egbrink, M.G.A.; et al. Exploration of the Platelet Proteome in Patients with Early-Stage Cancer. J. Proteom. 2018, 177, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.-P.; Raslova, H.; Bryckaert, M. Filamin A: Key Actor in Platelet Biology. Blood 2019, 134, 1279–1288. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, H.; Jiang, Y.; Xue, M.; Guo, C.; Shi, D.; Chen, K. Correlation between Platelet Gelsolin and Platelet Activation Level in Acute Myocardial Infarction Rats and Intervention Effect of Effective Components of Chuanxiong Rhizome and Red Peony Root. Evid.-Based Complemen. Altern. Med. 2013, 2013, 985746. [Google Scholar] [CrossRef]
- Dasgupta, S.K.; Thiagarajan, P. Cofilin-1–Induced Actin Reorganization in Stored Platelets. Transfusion 2020, 60, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.S.; Casari, C.; Wu, C.; Piatt, R.; Pasala, S.; Campbell, R.A.; Poe, K.O.; Ghalloussi, D.; Lee, R.H.; Rotty, J.D.; et al. Deletion of the Arp2/3 Complex in Megakaryocytes Leads to Microthrombocytopenia in Mice. Blood Adv. 2017, 1, 1398–1408. [Google Scholar] [CrossRef] [Green Version]
- Nachmias, V.T.; Golla, R.; Casella, J.F.; Barron-Casella, E. Cap Z, a Calcium Insensitive Capping Protein in Resting and Activated Platelets. FEBS Lett. 1996, 378, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Honn, K.V. Platelets and Cancer: A Casual or Causal Relationship: Revisited. Cancer Metastasis Rev. 2014, 33, 231–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Li, Q.; You, T.; Zhao, X.; Xu, X.; Tang, C.; Zhu, L. Humanin Analogue, HNG, Inhibits Platelet Activation and Thrombus Formation by Stabilizing Platelet Microtubules. J. Cell. Mol. Med. 2020, 24, 4773–4783. [Google Scholar] [CrossRef] [PubMed]
- Pothapragada, S.; Zhang, P.; Sheriff, J.; Livelli, M.; Slepian, M.J.; Deng, Y.; Bluestein, D. A Phenomenological Particle-Based Platelet Model for Simulating Filopodia Formation during Early Activation. Int. J. Numer. Methods Biomed. Eng. 2015, 31, e02702. [Google Scholar] [CrossRef] [Green Version]
- Periayah, M.H.; Halim, A.S.; Mat Saad, A.Z. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 319–327. [Google Scholar]
- Guidetti, G.F.; Manganaro, D.; Consonni, A.; Canobbio, I.; Balduini, C.; Torti, M. Phosphorylation of the Guanine-Nucleotide-Exchange Factor CalDAG-GEFI by Protein Kinase A Regulates Ca2+-Dependent Activation of Platelet Rap1b GTPase. Biochem. J. 2013, 453, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Wang, R.C.; Cheng, K.; Ring, B.Z.; Su, L. Roles of Rap1 Signaling in Tumor Cell Migration and Invasion. Cancer Biol. Med. 2017, 14, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Zarà, M.; Canobbio, I.; Visconte, C.; Canino, J.; Torti, M.; Guidetti, G.F. Molecular Mechanisms of Platelet Activation and Aggregation Induced by Breast Cancer Cells. Cell. Signal. 2018, 48, 45–53. [Google Scholar] [CrossRef]
- Peng, H.; Luo, J.; Hao, H.; Hu, J.; Xie, S.-K.; Ren, D.; Rao, B. MicroRNA-100 Regulates SW620 Colorectal Cancer Cell Proliferation and Invasion by Targeting RAP1B. Oncol. Rep. 2014, 31, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, C.; Yang, Q.; Ding, M.; Zhong, J.; Zhang, C.-Y.; Ge, J.; Wang, J.; Zhang, C. MiR-28-5p Acts as a Tumor Suppressor in Renal Cell Carcinoma for Multiple Antitumor Effects by Targeting RAP1B. Oncotarget 2016, 7, 73888–73902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chang, Y.-C.; Brennan, M.L.; Wu, J. The Structure of Rap1 in Complex with RIAM Reveals Specificity Determinants and Recruitment Mechanism. J. Mol. Cell Biol. 2014, 6, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet Integrin AIIbβ3: Signal Transduction, Regulation, and Its Therapeutic Targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, H.; Shang, Y.; Li, J.; David, G.A.; Fernandez, J.P.; Molina, H.; Filizola, M.; Coller, B.S. AIIbβ3 Binding to a Fibrinogen Fragment Lacking the γ-Chain Dodecapeptide Is Activation Dependent and EDTA Inducible. Blood Adv. 2017, 1, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Induruwa, I.; Moroi, M.; Bonna, A.; Malcor, J.-D.; Howes, J.-M.; Warburton, E.A.; Farndale, R.W.; Jung, S.M. Platelet Collagen Receptor Glycoprotein VI-Dimer Recognizes Fibrinogen and Fibrin through Their D-Domains, Contributing to Platelet Adhesion and Activation during Thrombus Formation. J. Thromb. Haemost. 2018, 16, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Goh, C.Y.; Patmore, S.; Smolenski, A.; Howard, J.; Evans, S.; O’Sullivan, J.; McCann, A. The Role of von Willebrand Factor in Breast Cancer Metastasis. Transl. Oncol. 2021, 14, 101033. [Google Scholar] [CrossRef]
- Kashiwagi, H.; Schwartz, M.A.; Eigenthaler, M.; Davis, K.A.; Ginsberg, M.H.; Shattil, S.J. Affinity Modulation of Platelet Integrin AIIbβ3 by Β3-Endonexin, a Selective Binding Partner of the Β3 Integrin Cytoplasmic Tail. J. Cell Biol. 1997, 137, 1433–1443. [Google Scholar] [CrossRef] [Green Version]
- Kasirer-Friede, A.; Kang, J.; Kahner, B.; Ye, F.; Ginsberg, M.H.; Shattil, S.J. ADAP Interactions with Talin and Kindlin Promote Platelet Integrin AIIbβ3 Activation and Stable Fibrinogen Binding. Blood 2014, 123, 3156–3165. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xiao, D.; Ni, Y.; Zhang, T.; Cao, Z.; Xu, Z.; Nguyen, H.; Zhang, J.; White, G.C.; Ding, J.; et al. Structure Basis of the FERM Domain of Kindlin-3 in Supporting Integrin AIIbβ3 Activation in Platelets. Blood Adv. 2020, 4, 3128–3135. [Google Scholar] [CrossRef]
- Wu, Y.; Span, L.M.; Nygren, P.; Zhu, H.; Moore, D.T.; Cheng, H.; Roder, H.; de Grado, W.F.; Bennett, J.S. The Tyrosine Kinase C-Src Specifically Binds to the Active Integrin AIIbβ3 to Initiate Outside-in Signaling in Platelets. J. Biol. Chem. 2015, 290, 15825–15834. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.B.; Smith, D.M.; Plow, E.F. Analysis of Fyn Function in Hemostasis and AIIbβ3-Integrin Signaling. J. Cell Sci. 2008, 121, 1641–1648. [Google Scholar] [CrossRef] [Green Version]
- Obergfell, A.; Eto, K.; Mocsai, A.; Buensuceso, C.; Moores, S.L.; Brugge, J.S.; Lowell, C.A.; Shattil, S.J. Coordinate Interactions of Csk, Src, and Syk Kinases with AIIbβ3 Initiate Integrin Signaling to the Cytoskeleton. J. Cell Biol. 2002, 157, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Integrins. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Legate, K.R.; Wickström, S.A.; Fässler, R. Genetic and Cell Biological Analysis of Integrin Outside-in Signaling. Genes Dev. 2009, 23, 397–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in Cancer: Biological Implications and Therapeutic Opportunities. Nat. Rev. Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamidi, H.; Ivaska, J. Every Step of the Way: Integrins in Cancer Progression and Metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Layseca, P.; Icha, J.; Hamidi, H.; Ivaska, J. Integrin Trafficking in Cells and Tissues. Nat. Cell Biol. 2019, 21, 122–132. [Google Scholar] [CrossRef]
- Nolte, M.A.; Nolte, E.N.; Margadant, C. Integrins Control Vesicular Trafficking; New Tricks for Old Dogs. Trends Biochem. Sci. 2021, 46, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Denorme, F.; Vanhoorelbeke, K.; de Meyer, S.F. Von Willebrand Factor and Platelet Glycoprotein Ib: A Thromboinflammatory Axis in Stroke. Front. Immunol. 2019, 10, 2884. [Google Scholar] [CrossRef]
- Marjoram, R.J.; Li, Z.; He, L.; Tollefsen, D.M.; Kunicki, T.J.; Dickeson, S.K.; Santoro, S.A.; Zutter, M.M. A2β1 Integrin, GPVI Receptor, and Common FcRγ Chain on Mouse Platelets Mediate Distinct Responses to Collagen in Models of Thrombosis. PLoS ONE 2014, 9, e114035. [Google Scholar] [CrossRef] [Green Version]
- Makhoul, S.; Dorschel, S.; Gambaryan, S.; Walter, U.; Jurk, K. Feedback Regulation of Syk by Protein Kinase C in Human Platelets. Int. J. Mol. Sci. 2019, 21, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevost, N.; Woulfe, D.S.; Tognolini, M.; Tanaka, T.; Jian, W.; Fortna, R.R.; Jiang, H.; Brass, L.F. Signaling by EphrinB1 and Eph Kinases in Platelets Promotes Rap1 Activation, Platelet Adhesion, and Aggregation via Effector Pathways That Do Not Require Phosphorylation of EphrinB1. Blood 2004, 103, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Inoue, K.; Inoue, O.; Ozaki, Y. Novel Platelet Activation Receptor CLEC-2: From Discovery to Prospects. J. Thromb. Haemost. 2011, 9, 44–55. [Google Scholar] [CrossRef]
- Kumaran, S.; Grucza, R.A.; Waksman, G. The Tandem Src Homology 2 Domain of the Syk Kinase: A Molecular Device That Adapts to Interphosphotyrosine Distances. Proc. Natl. Acad. Sci. USA 2003, 100, 14828–14833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdol Razak, N.; Jones, G.; Bhandari, M.; Berndt, M.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Suzuki-Inoue, K. Platelets and Cancer-Associated Thrombosis: Focusing on the Platelet Activation Receptor CLEC-2 and Podoplanin. Hematology 2019, 2019, 175–181. [Google Scholar] [CrossRef]
- Yin, H.; Stojanovic, A.; Hay, N.; Du, X. The Role of Akt in the Signaling Pathway of the Glycoprotein Ib-IX–Induced Platelet Activation. Blood 2008, 111, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Bye, A.P.; Unsworth, A.J.; Gibbins, J.M. Platelet Signaling: A Complex Interplay between Inhibitory and Activatory Networks. J. Thromb. Haemost. 2016, 14, 918–930. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Response: Inhibition of Platelet Activation by NO Involves Both CGMP-Dependent and -Independent Mechanisms. Blood 2012, 119, 5339. [Google Scholar] [CrossRef] [Green Version]
- Higgs, E.A.; Higgs, G.A.; Moncada, S.; Vane, J.R. Prostacyclin (Pgi2) Inhibits the Formation of Platelet Thrombi n Arterioles and Venules of the Hamster Cheek Pouch. Br. J. Pharmacol. 1997, 120, 439–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalker, T.J.; Newman, D.K.; Ma, P.; Wannemacher, K.M.; Brass, L.F. Platelet Signaling. In Antiplatelet Agents: Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–85. [Google Scholar] [CrossRef] [Green Version]
- Blazek, A.D.; Paleo, B.J.; Weisleder, N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology 2015, 30, 438–448. [Google Scholar] [CrossRef]
- Capra, E.; Lange-Consiglio, A. The Biological Function of Extracellular Vesicles during Fertilization, Early Embryo—Maternal Crosstalk and Their Involvement in Reproduction: Review and Overview. Biomolecules 2020, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Théry, C. Exosomes: Secreted Vesicles and Intercellular Communications. F1000 Biol. Rep. 2011, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key Players in Cancer and Potential Therapeutic Strategy. Signal Transduc. Target. Ther. 2020, 5, 145. [Google Scholar] [CrossRef]
- Zaldivia, M.T.K.; McFadyen, J.D.; Lim, B.; Wang, X.; Peter, K. Platelet-Derived Microvesicles in Cardiovascular Diseases. Front. Cardiovasc. Med. 2017, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Kooijmans, S.A.A.; de Jong, O.G.; Schiffelers, R.M. Exploring Interactions between Extracellular Vesicles and Cells for Innovative Drug Delivery System Design. Adv. Drug Deliv. Rev. 2021, 173, 252–278. [Google Scholar] [CrossRef]
- Jurj, A.; Zanoaga, O.; Braicu, C.; Lazar, V.; Tomuleasa, C.; Irimie, A.; Berindan-Neagoe, I. A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers 2020, 12, 298. [Google Scholar] [CrossRef] [Green Version]
- Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and Mechanisms of Extracellular Vesicle Uptake. J. Extracell. Vesicles 2014, 3, 24641. [Google Scholar] [CrossRef] [Green Version]
- Gonda, A.; Kabagwira, J.; Senthil, G.N.; Wall, N.R. Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol. Cancer Res. 2019, 17, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Meldolesi, J. Exosomes and Ectosomes in Intercellular Communication. Curr. Biol. 2018, 28, R435–R444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidharan-Chari, V.; Clancy, J.W.; Sedgwick, A.; d’Souza-Schorey, C. Microvesicles: Mediators of Extracellular Communication during Cancer Progression. J. Cell Sci. 2010, 123, 1603–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, D.T.; Apollonio, B.; Willimott, S.; Lezina, L.; Alharthi, A.; Ambrose, A.R.; de Rossi, G.; Ramsay, A.G.; Wagner, S.D. Extracellular Vesicles Released by CD40/IL-4–Stimulated CLL Cells Confer Altered Functional Properties to CD4+ T Cells. Blood 2016, 128, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Majka, M.; Kijowski, J.; Lesko, E.; Gozdizk, J.; Zupanska, B.; Ratajczak, M.Z. Evidence That Platelet-Derived Microvesicles May Transfer Platelet-Specific Immunoreactive Antigens to the Surface of Endothelial Cells and CD34+ Hematopoietic Stem/Progenitor Cells—Implication for the Pathogenesis of Immune Thrombocytopenias. Folia Histochem. Cytobiol. 2007, 45, 27–32. [Google Scholar] [PubMed]
- Edelstein, L.C. The Role of Platelet Microvesicles in Intercellular Communication. Platelets 2017, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Salvarezza, S.B.; Deborde, S.; Schreiner, R.; Campagne, F.; Kessels, M.M.; Qualmann, B.; Caceres, A.; Kreitzer, G.; Rodriguez-Boulan, E. LIM Kinase 1 and Cofilin Regulate Actin Filament Population Required for Dynamin-Dependent Apical Carrier Fission from the Trans—Golgi Network. Mol. Biol. Cell 2009, 20, 438–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casalou, C.; Faustino, A.; Barral, D.C. Arf Proteins in Cancer Cell Migration. Small GTPases 2016, 7, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Alenquer, M.; Amorim, M. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses 2015, 7, 5066–5083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aseervatham, J. Cytoskeletal Remodeling in Cancer. Biology 2020, 9, 385. [Google Scholar] [CrossRef]
- Goldmann, W.H. Role of Vinculin in Cellular Mechanotransduction. Cell Biol. Int. 2016, 40, 241–256. [Google Scholar] [CrossRef]
- Massagué, J.; Obenauf, A.C. Metastatic Colonization by Circulating Tumour Cells. Nature 2016, 529, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Burr, R.; Gilles, C.; Thompson, E.W.; Maheswaran, S. Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. Adv. Exp. Med. Biol. 2020, 1220, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Arora, J.; Sauer, S.J.; Tarpley, M.; Vermeulen, P.; Rypens, C.; van Laere, S.; Williams, K.P.; Devi, G.R.; Dewhirst, M.W. Inflammatory Breast Cancer Tumor Emboli Express High Levels of Anti-Apoptotic Proteins: Use of a Quantitative High Content and High-Throughput 3D IBC Spheroid Assay to Identify Targeting Strategies. Oncotarget 2017, 8, 25848–25863. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.; Pandey, D.; Khandoga, A.L.; Brandl, R.; Siess, W. Rac1-Mediated Signaling Plays a Central Role in Secretion-Dependent Platelet Aggregation in Human Blood Stimulated by Atherosclerotic Plaque. J. Transl. Med. 2010, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albiges-Rizo, C.; Destaing, O.; Fourcade, B.; Planus, E.; Block, M.R. Actin Machinery and Mechanosensitivity in Invadopodia, Podosomes and Focal Adhesions. J. Cell Sci. 2009, 122, 3037–3049. [Google Scholar] [CrossRef] [Green Version]
- Jacob, A.; Prekeris, R. The Regulation of MMP Targeting to Invadopodia during Cancer Metastasis. Front. Cell Dev. Biol. 2015, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourfarhangi, K.E.; Bergman, A.; Gligorijevic, B. ECM Cross-Linking Regulates Invadopodia Dynamics. Biophys. J. 2018, 114, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- Masi, I.; Caprara, V.; Bagnato, A.; Rosanò, L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front. Cell Dev. Biol. 2020, 8, 584181. [Google Scholar] [CrossRef]
- Ferrari, R.; Martin, G.; Tagit, O.; Guichard, A.; Cambi, A.; Voituriez, R.; Vassilopoulos, S.; Chavrier, P. MT1-MMP Directs Force-Producing Proteolytic Contacts That Drive Tumor Cell Invasion. Nat. Commun. 2019, 10, 4886. [Google Scholar] [CrossRef]
- Linder, S.; Kopp, P. Podosomes at a Glance. J. Cell Sci. 2005, 118, 2079–2082. [Google Scholar] [CrossRef] [Green Version]
- Revach, O.-Y.; Geiger, B. The Interplay between the Proteolytic, Invasive, and Adhesive Domains of Invadopodia and Their Roles in Cancer Invasion. Cell Adh. Migr. 2014, 8, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Gandalovičová, A.; Vomastek, T.; Rosel, D.; Brábek, J. Cell Polarity Signaling in the Plasticity of Cancer Cell Invasiveness. Oncotarget 2016, 7, 25022–25049. [Google Scholar] [CrossRef]
- Saito, R.; Shoda, K.; Maruyama, S.; Yamamoto, A.; Takiguchi, K.; Furuya, S.; Hosomura, N.; Akaike, H.; Kawaguchi, Y.; Amemiya, H.; et al. Platelets Enhance Malignant Behaviours of Gastric Cancer Cells via Direct Contacts. Br. J. Cancer 2021, 124, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.L.; Sun, J.; Gong, S.Q.; Yu, X.F.; Gong, R.; Deng, H. Interaction between Circulating Cancer Cells and Platelets: Clinical Implication. Chin. J. Cancer Res. 2015, 27, 450–460. [Google Scholar]
- Van Zijl, F.; Krupitza, G.; Mikulits, W. Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutat. Res. Rev. Mut. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef]
- Chiang, S.P.H.; Cabrera, R.M.; Segall, J.E. Tumor Cell Intravasation. Am. J. Physiol. Cell Physiol. 2016, 311, C1–C14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasgupta, A.; Lim, A.R.; Ghajar, C.M. Circulating and Disseminated Tumor Cells: Harbingers or Initiators of Metastasis? Mol. Oncol. 2017, 11, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Y.; Ding, Y.; Zhuang, R. Platelet-Mediated Tumor Metastasis Mechanism and the Role of Cell Adhesion Molecules. Crit. Rev. Oncol. Hematol. 2021, 167, 103502. [Google Scholar] [CrossRef]
- Strilic, B.; Offermanns, S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell 2017, 32, 282–293. [Google Scholar] [CrossRef] [Green Version]
Platelet Membrane Leaflet | Alpha Granules Membrane Leaflet | Dense Granules Membrane Leaflet | |||
---|---|---|---|---|---|
Inner | Outer | Inner | Outer | Inner | Outer |
CadherinsBC | GPIIb/IIIaLC,BC | APPCP,PC,BC,LC | CD62PCG,BC | RAB1LiC,BC | RAL 20BlC |
glycoprotein IVOS | IntegrinBC,OC | PDIBC,OC | MultimerinOCC | RAB 4PC,LiC,BC | |
CD53BC,KC,LC | FibrinogenCCR,PC | PTKBlC,CCR,BC,LC | CD3626 | RAB 6BC | |
CD37LH,AML | FYNBC,CCR,OC | FibrinogenPC,CCR, | GPIbBC,OC | RAB 8BC,OC | |
CDC42BC,PC,LC RANTESGC,OC | FibronectinBC,PC,LC PKCBC,LC | PF4OC,BC SerglycinCE | GBIIbIIIa factor VBC | RAP 1BC,GC | |
GpIIb/IIIaLC,BC | P-selectinLC,OC,CCR | PBPBC,LC,GC,LC | GMP140BC,LC,CCR | ||
E-selectinBC,CCR | OsteonectinBC,PC,OS,LC | NAP-2LC,CCR,OC | CD63BC,LC,PC,LiC,CCR | ||
CaveolinBC,CG | CD36CC,CCR,BC | SYKBC | VAMPBC,CCR,LC,PC | ||
β-dystroglycanBC,KC, | FibrinGC,EC,LC,BlC | MultimerinCC | SNAP23CCR,BC | ||
FilaminOC,CCR | MyosinBC,PC,PhC | CelubrevinaC | VWFCCR,BC,LC | ||
GelsolinBlC,LC,BC | CofilinPC,BC,BlC | CD72CCR,BC | LAMP227KC | ||
CofilinLC,P,BC | RGSCCR,LIN,LC | ||||
Sec1BC,CCR,Ml | CIB1OC,KC,EnC | ||||
NSFOC,CCR,LiC | TalinaCCR,PC | ||||
syntaxins 2/4CCR | SHCBC,GC,CCR | ||||
ActinGC,CC,BC | SRCOC,OS,PC | ||||
CalreticulinGC,BlC,PaC | PKABC,OC,OS | ||||
StromatinBC,LC,CC | PECAM1BC,BlC,CP | ||||
p65Ml,BC,PC,OC | CEACAM1AML,LC,CCR,BC | ||||
STIM1BC,CCR | CalmodulinPaC,GC,PC | ||||
TMEM16FC | P2Y12OC,BC,LC,PaC | ||||
CalmodulinKC,CCR,PC | P2YCCR,PC,LC | ||||
LATBC,TC,CCR | P2Y1OC,PC,GC | ||||
SLP-76C | MAC1LiC,OC | ||||
p38GC,CCR,BlC | CollagenCCR,BC,TC | ||||
DAGBC,BlCC | GalectinCCR,GC,PaC | ||||
ARF6LC,OC,TC | WASPBC,LC,PC | ||||
SCAR/WAVEBC,CCR | ZyxinCCR GpHb/IIIaBC | ||||
SyntaxinCC,BC,LiC | |||||
SNAPLiC,CCR | |||||
SNARECC,BC,GC,CCR | |||||
ActomyosinBC,LC,PC | |||||
ARF6PaC,CCR,KC,LC | |||||
SIRT1OC,PC,BC,LC | |||||
SANREGC,CCR,PC,CC | |||||
GPIb/IX/VBC,OrC | |||||
VitronectinAML,CCR,PC | |||||
ThromboplastinLC,LiC,GC | |||||
ThrombospondinOC,CCR,CC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Saenz, N.Z.; Serrano-Puente, A.; Gallegos-Flores, P.I.; Mendoza-Almanza, B.D.; Esparza-Ibarra, E.L.; Godina-González, S.; González-Curiel, I.E.; Ayala-Luján, J.L.; Hernández-Barrales, M.; Cueto-Villalobos, C.F.; et al. Platelet Membrane: An Outstanding Factor in Cancer Metastasis. Membranes 2022, 12, 182. https://doi.org/10.3390/membranes12020182
Durán-Saenz NZ, Serrano-Puente A, Gallegos-Flores PI, Mendoza-Almanza BD, Esparza-Ibarra EL, Godina-González S, González-Curiel IE, Ayala-Luján JL, Hernández-Barrales M, Cueto-Villalobos CF, et al. Platelet Membrane: An Outstanding Factor in Cancer Metastasis. Membranes. 2022; 12(2):182. https://doi.org/10.3390/membranes12020182
Chicago/Turabian StyleDurán-Saenz, Nazly Z., Alejandra Serrano-Puente, Perla I. Gallegos-Flores, Brenda D. Mendoza-Almanza, Edgar L. Esparza-Ibarra, Susana Godina-González, Irma E. González-Curiel, Jorge L. Ayala-Luján, Marisa Hernández-Barrales, Cecilia F. Cueto-Villalobos, and et al. 2022. "Platelet Membrane: An Outstanding Factor in Cancer Metastasis" Membranes 12, no. 2: 182. https://doi.org/10.3390/membranes12020182
APA StyleDurán-Saenz, N. Z., Serrano-Puente, A., Gallegos-Flores, P. I., Mendoza-Almanza, B. D., Esparza-Ibarra, E. L., Godina-González, S., González-Curiel, I. E., Ayala-Luján, J. L., Hernández-Barrales, M., Cueto-Villalobos, C. F., Frausto-Fierros, S. Y., Burciaga-Hernandez, L. A., & Mendoza-Almanza, G. (2022). Platelet Membrane: An Outstanding Factor in Cancer Metastasis. Membranes, 12(2), 182. https://doi.org/10.3390/membranes12020182