Research Advances in Hierarchically Structured PVDF-Based All-Organic Composites for High-Energy Density Capacitors
Abstract
:1. Introduction
2. Key Energy-Storage Parameters and Calculation Formula
3. Hierarchically Structured All-Organic Membranes
3.1. Bi-Layered Structure Membranes
3.2. Tri-Layered Structure Membranes
3.3. Multilayered Hierarchical Membranes
4. Summary and Outlook
- Hierarchically structured all-organic composites have higher breakdown strengths than those of single-layered and blended films. The electronic breakdown theory can mainly be described by finite element/phase–field simulation [47,48]. Both thermal and mechanical breakdown theories are still in their infancy. Considering that the cross-section of the prepared films is micron-sized, it is very difficult to obtain avisualization of the internal breakdown process.
- The obtained energy density of hierarchically structured all-organic composites is still at least an order of magnitude smaller than those of lithium-ion batteries and supercapacitors (~200 J cm−3). Therefore, there is still room to further enhance energy storage via optimizing structural design.
- With the pervasiveness of electric vehicles, photovoltaic power generation, and oil and gas exploration and exploitation, high-temperature polymer capacitors are urgently needed for satisfying the demands of harsh and extreme-temperature environments. For instance, the application temperature of a pulse power supply is 125–180 °C, the environmental temperature of oil and gas exploration is up to 175–250 °C, and the ambient temperature of a power inverter of the hybrid electric vehicle can exceed 140 °C.
- In general, hot pressing [49,50], solution casting [51,52], and melt co-extrusion [53] technology can be used for preparing hierarchically structured all-organic composites. However, there are still some respective shortcomings of the above methods in preparing high-quality and large-scale films. It is difficult to obtain all-organic composites with a nano-sized layer via hot pressing and solution casting methods [54,55]. There are many difficulties in regulating the thickness ratio of multilayered all-organic composites via the melt co-extrusion method. In addition, the price of fluoropolymers and cost of various preparation methods also need to be considered for large-scale film production at the technical level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Irwin, P.C.; Younsi, K. The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 797–807. [Google Scholar] [CrossRef]
- Peter, B.; Shiva, B.; Yogesh, A.; Gong, S.; Loye, H. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2009, 2, 1697–1733. [Google Scholar]
- Li, Q.; Liu, F.; Yang, T.; Gadinski, M.R.; Zhang, G.; Chen, L.-Q.; Wang, Q. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. USA 2016, 113, 9995–10000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q.M. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Kursumovic, A.; Lin, Y.-H.; Nan, C.-W.; MacManus-Driscoll, J.L. Dielectric films for high performance capacitive energy storage: Multiscale engineering. Nanoscale 2020, 12, 19582–19591. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-B.; Zhou, D.; Xu, R.; Wang, D.-W.; Su, J.-Z.; Pang, L.-X.; Liu, W.-F.; Chen, G.-H. BaTiO3-Based Multilayers with Outstanding Energy Storage Performance for High Temperature Capacitor Applications. ACS Appl. Energy Mater. 2019, 2, 5499–5506. [Google Scholar] [CrossRef]
- Chi, Q.G.; Zhang, C.H.; Feng, Y.; Zhang, T.; Zhang, Y. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 2019, 66, 104195. [Google Scholar]
- Barshaw, E.J.; White, J.; Chait, M.J.; Cornette, J.B.; Rabuffi, M. High energy density (HED) biaxially-oriented poly-propylene (BOPP) capacitors for pulse power applications. IEEE Trans. Magn. 2007, 43, 223–225. [Google Scholar] [CrossRef]
- Qi, L.; Petersson, L.; Liu, T. Review of Recent Activities on Dielectric Films for Capacitor Applications. J. Int. Counc. Electr. Eng. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Sarjeant, W. Capacitors. IEEE Trans. Dielectr. Electr. Insul. 1998, 25, 861–922. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254. [Google Scholar] [CrossRef]
- Huan, T.D.; Boggs, S.; Teyssedre, G.; Laurent, C.; Cakmak, M.; Kumar, S.; Ramprasad, R. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 2016, 83, 236–269. [Google Scholar] [CrossRef]
- Feng, Q.K.; Zhong, S.L.; Pei, J.Y.; Zhao, Y.; Zhang, D.L.; Liu, D.F.; Zhang, X.Y.; Dang, Z.M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2022, 122, 3820–3878. [Google Scholar] [CrossRef] [PubMed]
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 3. [Google Scholar] [CrossRef]
- Guo, M.F.; Jiang, J.Y.; Shen, Z.H.; Lin, Y.H.; Shen, Y. High-Energy-Density Ferroelectric Polymer Nanocomposites for Capacitive Energy Storage: Enhanced Breakdown Strength and Improved Discharge Efficiency. Mater. Today 2019, 29, 49–67. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.F.; Ellingford, C.; Zhang, Y.; Zhang, D.; Chen, S. Interface design for high energy density polymer nano-composites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Q.G.; Ma, T.; Zhang, Y.; Chen, Q.G.; Zhang, C.H.; Cui, Y. Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduced the hybrid CoFe2O4@BZT-BCT nanofibers. Engineering 2017, 177, 107429. [Google Scholar]
- Zhang, Y.; Chi, Q.G.; Liu, L.Z.; Zhang, C.; Chen, C.; Wang, X. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Mater. 2017, 5, 076109. [Google Scholar] [CrossRef]
- Jiang, D.L.; Zeng, Y.P.; Singh, M. Ceramic Materials and Components for Energy and Environmental Applications; John Wiley Sons Ltd.: Hoboken, NJ, USA, 2010; Volume 74, p. 104844. [Google Scholar]
- Wang, Y.; Yao, M.G.; Yuan, Q.B.; Yang, D.S. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 2020, 8, 884–917. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, S.B.; Ding, S.; Song, Z.; Yu, S. Improved permittivity and breakdown strength of PVDF composites filled with TiO2-SrTiO3 hybrids. J. Mater. Chem. A 2017, 15, 1238–1241. [Google Scholar]
- Yao, L.M.; Pan, Z.B.; Zhai, J.W.; Zhang, G.G.; Liu, Z.L. High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Compos. Part A. 2018, 109, 48–54. [Google Scholar] [CrossRef]
- Li, L.L.; Wei, S.; Hu, X.H.; Su, R.; Yang, Y.D.; Zhang, D.W. Construction of ternary core-shell Fe3O4@BaTiO3/PVDF nanocomposites with enhanced permittivity and breakdown strength for energy storage. Mater. Chem. Phys. 2021, 265, 124505. [Google Scholar] [CrossRef]
- Yu, D.; Xu, N.X.; Hu, L.; Zhang, Q.L.; Yang, H. Nanocomposites with BaTiO3–SrTiO3 hybrid fillers exhibiting enhanced dielectric behaviors and energy-storage densities. J. Mater. Chem. C 2015, 3, 4016–4022. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Zhang, Q.H.; Gu, L.; Hu, Y.H.; Du, J.W. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 2015, 27, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Y.; Xu, B.; Zhang, Q.H.; Gu, L.; Jiang, J.Y. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 2016, 28, 2055–2061. [Google Scholar] [CrossRef]
- Luo, S.B.; Yu, J.Y.; Yu, S.H.; Sun, R.; Cao, L.Q.; Liao, W.H. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy. Mater. 2019, 9, 1803204. [Google Scholar] [CrossRef]
- Wan, B.Q.; Yue, S.S.; Li, H.Y.; Liu, Y.Y.; Zhang, Q.W. Significantly enhanced dielectric and energy storage properties of plate-like BN@BaTiO3 composite nanofibers filled polyimide films. Mater. Res. Bull. 2019, 120, 110573. [Google Scholar] [CrossRef]
- Fan, L.; Yang, D.S.; Huang, L.; Fan, M.; Lei, C.X.; Fu, Q. Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller. Polymer 2020, 201, 122608. [Google Scholar] [CrossRef]
- Rahimabady, M.; Yao, K.; Arabnejad, S.; Li, L.; Shim, P.W. Intermolecular interactions and high dielectric energy storage density in poly(vinylidene fluoride-hexafluoropropylene)/poly(vinylidene fluoride) blend thin films. Appl. Phys. Lett. 2012, 100, 334. [Google Scholar] [CrossRef]
- Chen, C.; Xing, J.W.; Cui, Y.; Zhang, C.H.; Feng, Y.; Zhang, Y.Q. Designing of Ferroelectric/Linear Dielectric Bilayer Films: An Effective Way to Improve the Energy Storage Performances of Polymer-Based Capacitors. J. Phys. Chem. C 2020, 114, 5920–5927. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Q. Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics. Macromolecules 2012, 45, 2937–2954. [Google Scholar] [CrossRef]
- Thakur, V.K.; Gupta, R.K. Recent progress on ferroelectric polymer-based nano-composites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4269. [Google Scholar]
- Wang, L.; Luo, H.; Zhou, X.F.; Yuan, X.; Zhou, K.C.; Zhang, D. Sandwich-structured all-organic composites with high breakdown strength and high dielectric constant for film capacitor. Compos. Part A 2018, 117, 369–376. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.F.; Yuan, Q.B.; Xu, X.W.; Niu, Y.J.; Wang, Q.; Wang, H. Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 2018, 54, 288–296. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.F.; Xu, X.W.; Yuan, Q.B.; Wang, Q.; Wang, H. Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers. J. Mater. Chem. A 2019, 7, 3729–3736. [Google Scholar] [CrossRef]
- Zhu, Y.K.; Jiang, P.K.; Huang, X.Y. Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 2019, 179, 115–124. [Google Scholar] [CrossRef]
- Luo, B.C.; Wang, X.H.; Wang, H.X.; Cai, Z.M.; Li, L.T. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos. Sci. Technol. 2017, 151, 94–103. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.F.; Dong, J.F.; Chen, W.X.; Wang, H. Ultrahigh energy storage density at low operating field strength achieved in multicomponent polymer dielectrics with hierarchical structure. Compos. Sci. Technol. 2021, 201, 108557. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.F.; Chen, W.X. Excellent comprehensive energy storage capabilities achieved in linear polymer composites via inserting acrylic rubber dielectric elastomers. J. Mater. Chem. C 2021, 9, 5000–5007. [Google Scholar] [CrossRef]
- Xie, H.R.; Wang, L.; Gao, X.; Luo, H.; Luo, L.H.; Zhang, D. High Breakdown Strength and Energy Density in Multi-layer-Structured Ferroelectric Composite. ACS Omega 2020, 50, 32660–32666. [Google Scholar] [CrossRef]
- Pma, B.; Acl, A.; Lma, B. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Yin, K.; Zhou, Z.; Schuele, D.E.; Wolak, M.; Zhu, L.; Baer, E. Effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films. ACS Appl. Mater. Interfaces 2016, 8, 13555–13566. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, J.; Li, Y.; Niu, Y.J.; Wang, Q.; Wang, H. Multilayered hierarchical polymer composites for high energy density capacitors. J. Mater. Chem. A 2019, 7, 2965–2980. [Google Scholar] [CrossRef]
- Zhang, T.; Dan, Z.K.; Shen, Z.H.; Jiang, J.Y.; Guo, M.F.; Chen, B. An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Adv. 2020, 10, 5886–5893. [Google Scholar] [CrossRef]
- Cui, Y.; Feng, Y.; Zhang, T.D.; Zhang, C.H.; Zhang, Y.Q.; Wang, X. Excellent Energy Storage Performance of Ferrocon-crete-like All-Organic Linear/Ferroelectric Polymer Films Utilizing Interface Engineering. ACS Appl. Mater. Interfaces 2020, 50, 56424–56434. [Google Scholar] [CrossRef]
- Niu, Y.; Bai, Y.; Yu, K.; Wang, Y.; Xiang, F.; Wang, H. Effect of the Modifier Structure on the Performance of Barium Titanate/Poly(vinylidene fluoride) Nanocomposites for Energy Storage Applications. ACS Appl. Mater. Interfaces 2015, 7, 24168–24176. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, J.; Yuan, Q.; Niu, Y.; Bai, Y.; Wang, H. Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites. Adv. Mater. 2015, 27, 6658–6663. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, T.D.; Feng, Y.; Zhang, C.Z.; Chi, Q.G.; Zhang, Y.Q.; Chen, Q.G.; Wang, X.; Lei, Q.Q. Excellent Energy Storage Density and Efficiency in Blend Polymer-Based Composites by Design of Core-Shell Structured Inorganic More Apparent and Sandwich Structured Films. Compos. B. Eng. 2019, 177, 107429. [Google Scholar] [CrossRef]
- Liu, F.H.; Li, Q.; Cui, J.; Li, Z.Y.; Yang, G.; Liu, Y.; Dong, L.J.; Xiong, C.X.; Wang, H.; Wang, Q. High-Energy-Density Dielectric Polymer Nanocomposites with Trilayered Architecture. Adv. Funct. Mater. 2017, 27, 162. [Google Scholar]
- Zhang, H.; Marwat, M.A.; Xie, B.; Ashtar, M.; Ye, Z.G. Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Mater. Interfaces 2020, 12, 1–37. [Google Scholar] [CrossRef]
- Feng, M.J.; Feng, Y.; Zhang, T.D.; Li, J.L.; Chen, Q.G.; Chi, Q.G.; Lei, Q.Q. Recent advances in multilayer-structure dielec-trics for energy storage application. Adv. Sci. 2021, 8, 2102221. [Google Scholar] [CrossRef] [PubMed]
- Baer, E.; Zhu, L. 50th Anniversary Perspective: Dielectric Phenomena in Polymers and Multilayered Dielectric Films. Macromolecules 2017, 50, 2239–2256. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, Q.; Zhang, L.; Zhu, Y.W.; Guo, X.; Fan, P.Y.; Zhang, H.B. Ultrahigh Discharged Energy Density in Polymer Nanocomposite by Designing Linear/Ferroelectric Bilayer Hetero-structure. Nano Energy 2018, 54, 437–446. [Google Scholar] [CrossRef]
- Tseng, J.K.; Tang, S.; Zhou, Z.; Mackey, M.; Carr, J.M.; Mu, R.; Flandin, L.; Schuele, D.E.; Baer, E.; Zhu, L. Interfacial Polar-ization and Layer Thickness Effect on Electrical Insulation in Multilayered Polysulfone/Poly(vinylidene fluoride) Films. Polymer 2014, 55, 8–14. [Google Scholar] [CrossRef]
Energy Storage Devices | Power Density (W kg−1) | Energy Density (J cm−3) | Efficiency | Lifetime | Cost | Weight |
---|---|---|---|---|---|---|
Dielectric capacitor | 104–107 | 2–30 | High | High | Low | Low |
Supercapacitor | >104 | >20 | Low | High | High | High |
Lithium-ion batteries | <103 | >200 | High | Low | Low | Low |
Structure | Constituent | Breakdown Strength (MV m−1) | Energy Density (J cm−3) | Efficiency (%) | Refs. |
---|---|---|---|---|---|
Bi-layered films | P(VDF-TrFE-CFE)/PI | 487.5 | 9.6 | 58 | [31] |
Tri-layered films | PVDF/P(VDF-TrFE-CTFE)/PVDF | 599 | 20.86 | 62 | [34] |
P(VDF-HFP)/PMMA/P(VDF-HFP) | 440 | 20.3 | 84 | [35] | |
DE + P(VDF-HFP)/PMMA/DE + P(VDF-HFP) | 300 | 11.8 | 89 | [36] | |
P(VDF-HFP) + PMMA/DE/P(VDF-HFP) + PMMA | 350 | 15 | 76.5 | [39] | |
PMMA/DE/PMMA | 347.8 | 12.45 | 89 | [40] | |
Multilayered films | PVDF//P(VDF-TrFE-CTFE) | 426 | 18.12 | 80 | [41] |
P(VDF-HFP)//PMMA | 735 | 25.3 | 84.3 | [45] | |
PVDF//PMMA | 630 | 20.7 | 63 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Li, M.; Chen, W.; Chen, J.; Liu, Y.-J.; Wang, Y. Research Advances in Hierarchically Structured PVDF-Based All-Organic Composites for High-Energy Density Capacitors. Membranes 2022, 12, 274. https://doi.org/10.3390/membranes12030274
Zhang X, Zhang L, Li M, Chen W, Chen J, Liu Y-J, Wang Y. Research Advances in Hierarchically Structured PVDF-Based All-Organic Composites for High-Energy Density Capacitors. Membranes. 2022; 12(3):274. https://doi.org/10.3390/membranes12030274
Chicago/Turabian StyleZhang, Xiaoyong, Longyan Zhang, Meng Li, Weixing Chen, Jie Chen, Yan-Jun Liu, and Yifei Wang. 2022. "Research Advances in Hierarchically Structured PVDF-Based All-Organic Composites for High-Energy Density Capacitors" Membranes 12, no. 3: 274. https://doi.org/10.3390/membranes12030274
APA StyleZhang, X., Zhang, L., Li, M., Chen, W., Chen, J., Liu, Y. -J., & Wang, Y. (2022). Research Advances in Hierarchically Structured PVDF-Based All-Organic Composites for High-Energy Density Capacitors. Membranes, 12(3), 274. https://doi.org/10.3390/membranes12030274