Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials
Abstract
:1. Introduction
2. Water-Resistant Modification Method of PVA
2.1. Single Method Modification
2.1.1. Nano-Fill Modification
2.1.2. Polymer Co-Blend Modification
2.1.3. Chemical Cross-Linking Modification
2.2. Synergistic Modification
2.2.1. Nanofill and Polymer Co-Blend Modification
2.2.2. Chemical Cross-Linking and Polymer Co-Blend Modification
3. Application of PVA Water Resistant Films
3.1. Packaging Field
3.2. Optoelectronic Field
4. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for alcohol-free beer production: A review. Food Sci. Technol. 2020, 40, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.; Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Ward, C.P.; Armstrong, C.J.; Walsh, A.N.; Jackson, J.H.; Reddy, C.M. Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon. Environ. Sci. Technol. Lett. 2019, 6, 669–674. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Wycisk, R.; Abbassy, M.M.; El-Naim, G.A.; El-Demerdash, F.; Youssef, M.E.; Bassuony, H.; Pintauro, P.N. Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies. Carbohydr. Polym. 2017, 165, 149–158. [Google Scholar] [CrossRef]
- Jridi, M.; Hajji, S.; Ayed, H.B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int. J. Biol. Macromol. 2014, 67, 373–379. [Google Scholar] [CrossRef]
- Mori, T.; Sakimoto, M.; Kagi, T.; Sakai, T. Isolation and Characterization of a Strain of Bacillus megaterium That Degrades Poly(vinyl alcohol). Biosci. Biotechnol. Biochem. 1996, 60, 330–332. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Chen, P.; Duan, M.; Lin, X.; Zhang, Y. Biodegradation analysis of polyvinyl alcohol during the compost burial course. J. Basic Microbiol. 2019, 59, 368–374. [Google Scholar] [CrossRef]
- Shimao, M.; Fujita, I.; Kato, N.; Sakazawa, C. Enhancement of Pyrroloquinoline Quinone Production and Polyvinyl Alcohol Degradation in Mixed Continuous Cultures of Pseudomonas putida VM15A and Pseudomonas sp. Strain VM15C with Mixed Carbon Sources. Appl. Environ. Microbiol. 1985, 49, 1389–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, K.; Hamada, N.; Watanabe, Y. Degradation Mechanism of Poly(vinyl alcohol) by Successive Reactions of Secondary Alcohol Oxidase and β-Diketone Hydrolase from Pseudomonas sp. Agric. Biol. Chem. 1986, 50, 989–996. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym. Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef] [Green Version]
- Saini, I.; Sharma, A.; Dhiman, R.; Aggarwal, S.; Ram, S.; Sharma, P.K. Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol. J. Alloys Compd. 2017, 714, 172–180. [Google Scholar] [CrossRef]
- Gohil, J.M.; Bhattacharya, A.; Ray, P. Studies on The Crosslinking of Poly (Vinyl Alcohol). J. Polym. Res. 2006, 13, 161–169. [Google Scholar] [CrossRef]
- Yang, E.; Qin, X.; Wang, S. Electrospun crosslinked polyvinyl alcohol membrane. Mater. Lett. 2008, 62, 3555–3557. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Li, L. Dehydration of water-plasticized poly(vinyl alcohol) systems: Particular behavior of isothermal mass transfer. Polym. Int. 2009, 58, 97–104. [Google Scholar] [CrossRef]
- Tang, Y.; Du, Y.; Li, Y.; Wang, X.; Hu, X. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J. Biomed. Mater. Res. Part A 2009, 91A, 953–963. [Google Scholar] [CrossRef]
- Othman, S.H. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agric. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 2020, 9, 2477–2486. [Google Scholar] [CrossRef]
- Yu, C.; Xu, W.; Zhao, X.; Xu, J.; Jiang, M. Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber. Fibers Polym. 2014, 15, 1828–1834. [Google Scholar] [CrossRef]
- Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16. [Google Scholar] [CrossRef]
- Jayaramudu, J.; Reddy, G.S.M.; Varaprasad, K.; Sadiku, E.R.; Sinha Ray, S.; Varada Rajulu, A. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr. Polym. 2013, 93, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Sonker, A.K.; Rathore, K.; Nagarale, R.K.; Verma, V. Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof. J. Polym. Environ. 2018, 26, 1782–1794. [Google Scholar] [CrossRef]
- Gautam, L.; Warkar, S.G.; Ahmad, S.I.; Kant, R.; Jain, M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2022, 62, 225–246. [Google Scholar] [CrossRef]
- Ben Halima, N. Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv. 2016, 6, 39823–39832. [Google Scholar] [CrossRef]
- Sapalidis, A.A. Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry 2020, 12, 960. [Google Scholar] [CrossRef]
- Kamal, Y.; Li San, T.; Zulhelmi, I.; Abu Hannifa, A. Solution Casting of Polyvinyl Alcohol–Functionalized Graphene Nanocomposites. Mater. Today Proc. 2019, 17, 640–645. [Google Scholar] [CrossRef]
- Lifan, X.; Hui-lin, Y.; Hongfei, L. The Technology of PVA/Starch Bubble Film. Plastics 2008, 37, 83–86. [Google Scholar]
- Dong, Y.Q.; Zhang, L.; Shen, J.N.; Song, M.Y.; Chen, H.L. Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 2006, 193, 202–210. [Google Scholar] [CrossRef]
- Awada, H.; Daneault, C. Chemical Modification of Poly(Vinyl Alcohol) in Water. Appl. Sci. 2015, 5, 840–850. [Google Scholar] [CrossRef]
- Zhao, F.; Yao, D.; Guo, R.; Deng, L.; Dong, A.; Zhang, J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials 2015, 5, 2054–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.-Y.; Li, R.; Hu, J.; Zhang, J.; Han, X.; Wang, X.; Xu, W.-R.; Zhang, Y. Chitin and waste shrimp shells liquefaction and liquefied products/polyvinyl alcohol blend membranes. Carbohydr. Polym. 2019, 205, 550–558. [Google Scholar] [CrossRef]
- Koteswararao, J.; Satyanarayana, S.V.; Madhu, G.M.; Venkatesham, V. Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films. Heliyon 2019, 5, e01851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packag. Shelf Life 2020, 25, 100523. [Google Scholar] [CrossRef]
- Soares, I.L.; Chimanowsky, J.P.; Luetkmeyer, L.; Silva, E.O.d.; Souza, D.d.H.S.; Tavares, M.I.B. Evaluation of the Influence of Modified TiO2 Particles on Polypropylene Composites. J. Nanosci. Nanotechnol. 2015, 15, 5723–5732. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Ren, J.; Chang, M.; He, B.; Zhang, C. Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films. Int. J. Biol. Macromol. 2019, 132, 978–986. [Google Scholar] [CrossRef]
- Jayakumar, A.; Heera, K.V.; Sumi, T.S.; Joseph, M.; Mathew, S.; Praveen, G.; Nair, I.C.; Radhakrishnan, E.K. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 2019, 136, 395–403. [Google Scholar] [CrossRef]
- Bunmechimma, L.; Leejarkpai, T.; Riyajan, S.-A. Fabrication and physical properties of a novel macroporous poly(vinyl alcohol)/cellulose fibre product. Carbohydr. Polym. 2020, 240, 116215. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 2018, 184, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-P.; Chen, C.-W.; Xie, J. Development of antimicrobial active films based on poly(vinyl alcohol) containing nano-TiO2 and its application in macrobrachium rosenbergii packaging. J. Food Processing Preserv. 2018, 42, e13702. [Google Scholar] [CrossRef]
- Qiu, Z.; Niu, W.; Wang, S.; Yu, F.; Yu, Y.; Fan, J.; Zheng, L.; Wang, Y.; Xiao, Z.; Xie, Y. Multifunctional composite film based on biodegradable grape skin and polyvinyl alcohol. Cellulose 2021, 28, 6467–6479. [Google Scholar] [CrossRef]
- Popescu, M.-C. Structure and sorption properties of CNC reinforced PVA films. Int. J. Biol. Macromol. 2017, 101, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Espinosa, E.; Carrasco, E.; Pérez-Rodríguez, F.; Rodríguez, A. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Foods 2021, 10, 1584. [Google Scholar] [CrossRef]
- Nayak, V.; Jyothi, M.S.; Balakrishna, R.G.; Padaki, M.; Ismail, A.F. Preparation and Characterization of Chitosan Thin Films on Mixed-Matrix Membranes for Complete Removal of Chromium. ChemistryOpen 2015, 4, 278–287. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 2018, 107, 848–854. [Google Scholar] [CrossRef]
- Rommi, K.; Rahikainen, J.; Vartiainen, J.; Holopainen, U.; Lahtinen, P.; Honkapää, K.; Lantto, R. Potato peeling costreams as raw materials for biopolymer film preparation. J. Appl. Polym. Sci. 2016, 133, 42862. [Google Scholar] [CrossRef]
- Fahrngruber, B.; Eichelter, J.; Erhäusl, S.; Seidl, B.; Wimmer, R.; Mundigler, N. Potato-fiber modified thermoplastic starch: Effects of fiber content on material properties and compound characteristics. Eur. Polym. J. 2019, 111, 170–177. [Google Scholar] [CrossRef]
- Kliem, S.; Kreutzbruck, M.; Bonten, C. Review on the Biological Degradation of Polymers in Various Environments. Materials 2020, 13, 4586. [Google Scholar] [CrossRef]
- Mittal, A.; Garg, S.; Bajpai, S. Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application. Mater. Today Proc. 2020, 21, 1577–1582. [Google Scholar] [CrossRef]
- Tian, H.; Yan, J.; Rajulu, A.V.; Xiang, A.; Luo, X. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. Int. J. Biol. Macromol. 2017, 96, 518–523. [Google Scholar] [CrossRef]
- Pantelic, B.; Ponjavic, M.; Jankovic, V.; Aleksic, I.; Stevanovic, S.; Murray, J.; Fournet, M.B.; Nikodinovic-Runic, J. Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer. Polymers 2021, 13, 3692. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.; Moheb, A.; Ghiaci, M.; Masoomi, M. Effect of cross-linking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane cross-linked with fumaric acid used for dehydration of isopropanol. J. Appl. Polym. Sci. 2012, 128, 1640–1651. [Google Scholar] [CrossRef]
- Yu, M.; Long, T.; Zhang, R.; Dong, Z.; Cao, W.; Chen, H.; Zhang, L. Preparation and Antibacterial Property of Modified Montmorillonite/ PVA/Starch Composite Film. Food Sci. Technol. 2020, 45, 78–83. [Google Scholar] [CrossRef]
- Gan, W.-l.; Yang, H.-y.; Zhang, L.; Zhang, Z.; Xiong, C.; Xie, Y.-s.; Xu, J.-s. Preparation and Characterization of Polyvinyl Alcohol (PVA)-montmorillonite Composite Films Incorporated with Tea Polyphenols. Packag. Eng. 2019, 40, 198–204. [Google Scholar] [CrossRef]
- Suganthi, S.; Mohanapriya, S.; Raj, V.; Kanaga, S.; Dhandapani, R.; Vignesh, S.; Kalyana Sundar, J. Tunable Physicochemical and Bactericidal Activity of Multicarboxylic-Acids-Crosslinked Polyvinyl Alcohol Membrane for Food Packaging Applications. ChemistrySelect 2018, 3, 11167–11176. [Google Scholar] [CrossRef]
- Liu, B.; Huang, X.; Wang, S.; Wang, D.; Guo, H. Performance of Polyvinyl Alcohol/Bagasse Fibre Foamed Composites as Cushion Packaging Materials. Coatings 2021, 11, 1094. [Google Scholar] [CrossRef]
- Jun, G.; Jingxin, L.; Xungang, L. Esterification of Polyvinyl Alcohol with stearic acid and properties of Esterification product. Acta Polym. Sin. 2001, 1, 118–120. [Google Scholar] [CrossRef]
- Feiyang, H.; Juncheng, L.; Huan, J.; You, S. Polyvinyl Alcohol Film Preparation. Shandong Chem. Ind. 2019, 48, 14–15. [Google Scholar] [CrossRef]
- Suganthi, S.; Vignesh, S.; Kalyana Sundar, J.; Raj, V. Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl. Water Sci. 2020, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lee, C.H.; Hong, W.H. Performances of crosslinked asymmetric poly(vinyl alcohol) membranes for isopropanol dehydration by pervaporation. Chem. Eng. Process. Process Intensif. 2002, 41, 693–698. [Google Scholar] [CrossRef]
- LI, Z.; Puwang, L.; Yan, Y.; Ziming, Y.; Jihua, L.; Zuyu, H.; Jing, J.; Chao, W.; Chuang, Z. Preparation and thermoelectric properties of carbon fiber reinforced cement-based composite. J. Funct. Mater. 2020, 51, 4153–4159. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Meng, F.; Li, J.; Huo, C.; Du, X.; Xu, S. Polyvinyl alcohol based bio-composite films reinforced by liquefaction products and cellulose nanofibrils from coconut coir. J. Appl. Polym. Sci. 2022, 139, 51821. [Google Scholar] [CrossRef]
- Garavand, Y.; Taheri-Garavand, A.; Garavand, F.; Shahbazi, F.; Khodaei, D.; Cacciotti, I. Starch-Polyvinyl Alcohol-Based Films Reinforced with Chitosan Nanoparticles: Physical, Mechanical, Structural, Thermal and Antimicrobial Properties. Appl. Sci. 2022, 12, 1111. [Google Scholar] [CrossRef]
- Amaregouda, Y.; Kamanna, K.; Gasti, T.; Kumbar, V. Enhanced Functional Properties of Biodegradable Polyvinyl Alcohol/Carboxymethyl Cellulose (PVA/CMC) Composite Films Reinforced with l-alanine Surface Modified CuO Nanorods. J. Polym. Environ. 2022. [Google Scholar] [CrossRef]
- Chen, L.; Qiang, T.; Chen, X.; Ren, W.; Zhang, H.J. Tough and Biodegradable Gelatin-Based Film via the Synergistic Effect of Multi-Cross-Linking. ACS Appl. Polym. Mater. 2022, 4, 357–368. [Google Scholar] [CrossRef]
- Sajjan, A.M.; Naik, M.L.; Kulkarni, A.S.; Fazal-E-Habiba Rudgi, U.; Ashwini, M.; Shirnalli, G.G.; Sharanappa, A.; Kalahal, P.B. Preparation and characterization of PVA-Ge/PEG-400 biodegradable plastic blend films for packaging applications. Chem. Data Collect. 2020, 26, 100338. [Google Scholar] [CrossRef]
- Wen, L.; Liang, Y.; Lin, Z.; Xie, D.; Zheng, Z.; Xu, C.; Lin, B. Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. Polymer 2021, 230, 124048. [Google Scholar] [CrossRef]
- Landim, A.P.M.; Bernardo, C.O.; Martins, I.B.A.; Francisco, M.R.; Santos, M.B.; De Melo, N.R. Sustainability concerning food packaging in Brazil. Polimeros 2016, 26, 82–92. [Google Scholar] [CrossRef]
- Fellers, C.; Backstrom, M.; Htun, M.; Lindholm, G. Paper-to-paper friction—Paper structure and moisture. Nord. Pulp Pap. Res. J. 1998, 13, 225–232. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Sun, Y.-C. Experimental investigation on bending fatigue failure of corrugated paperboard. Packag. Technol. Sci. 2018, 31, 601–609. [Google Scholar] [CrossRef]
- Linvill, E.; Östlund, S. The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper. Exp. Mech. 2014, 54, 1329–1341. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, T.V.; de Freitas, P.A.V.; Pola, C.C.; da Silva, J.O.R.; Diaz, L.D.A.; Ferreira, S.O.; Soares, N.D.F. Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packag. Shelf Life 2020, 24, 100459. [Google Scholar] [CrossRef]
- Wang, K.; Hazra, R.S.; Ma, Q.; Jiang, L.; Liu, Z.; Zhang, Y.; Wang, S.; Han, G. Multifunctional silk fibroin/PVA bio-nanocomposite films containing TEMPO-oxidized bacterial cellulose nanofibers and silver nanoparticles. Cellulose 2022, 29, 1647–1666. [Google Scholar] [CrossRef]
- Yihun, F.A.; Ifuku, S.; Saimoto, H.; Yihun, D.A. Thermo-mechanically improved polyvinyl alcohol composite films using maleated chitin nanofibers as nano-reinforcement. Cellulose 2021, 28, 2965–2980. [Google Scholar] [CrossRef]
- Gürler, N.; Paşa, S.; Erdoğan, Ö.; Cevik, O. Physicochemical Properties for Food Packaging and Toxicity Behaviors Against Healthy Cells of Environmentally Friendly Biocompatible Starch/Citric Acid/Polyvinyl Alcohol Biocomposite Films. Starch 2021, 2100074. [Google Scholar] [CrossRef]
- Khan, S.A.; Rahman, A.; Ibrahim, F.B.D.-A. The impact of film thickness on the properties of ZnO/PVA nanocomposite film. Mater. Res. Express 2021, 8, 75002. [Google Scholar] [CrossRef]
- Amin, G.A.M.; Abd-El Salam, M.H. Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 2014, 1, 25024. [Google Scholar] [CrossRef]
- Abdelaziz, M. Cerium (III) doping effects on optical and thermal properties of PVA films. Phys. B Condens. Matter 2011, 406, 1300–1307. [Google Scholar] [CrossRef]
- Kumari Nisha, S. Polyvinyl alcohol/beetroot dye film as light absorbing material in solar cell. AIP Conf. Proc. 2020, 2287, 20023. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Shafie, S.; Wahid, M.H.; Sulaiman, Y. Light scattering effect of polyvinyl-alcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Sci. Rep. 2019, 9, 14952. [Google Scholar] [CrossRef] [PubMed]
- Samir, E.; Salah, M.; Hajjiah, A.; Shehata, N.; Fathy, M.; Hamed, A. Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency Improvement. Polymers 2018, 10, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaalan, N.M.; Hanafy, T.A.; Rashad, M. Dual optical properties of NiO-doped PVA nanocomposite films. Opt. Mater. 2021, 119, 111325. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Hamdalla, T.A.; Seleim, S.M.; Hanafy, T.A.; Aljohani, M.; Rashad, M. Influence of Incorporation of Gallium Oxide Nanoparticles on the Structural and Optical Properties of Polyvinyl Alcohol Polymer. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4141–4149. [Google Scholar] [CrossRef]
- Hemalatha, K.S.; Rukmani, K.; Suriyamurthy, N.; Nagabhushana, B.M. Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: A composition dependent study. Mater. Res. Bull. 2014, 51, 438–446. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. A Review of Clinical Translation of Inorganic Nanoparticles. AAPS J. 2015, 17, 1041–1054. [Google Scholar] [CrossRef] [Green Version]
- Kariminejad, M.; Sadeghi, E.; Rouhi, M.; Mohammadi, R.; Askari, F.; Taghizadeh, M.; Moradi, S. The effect of nano-SiO2 on the physicochemical and structural properties of gelatin-polyvinyl alcohol composite films. J. Food Process. Eng. 2018, 41, e12817. [Google Scholar] [CrossRef]
- Lian, Z.; Zhang, Y.; Zhao, Y. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153. [Google Scholar] [CrossRef]
- Agarwal, S.; Saraswat, V.K. Structural and optical characterization of ZnO doped PC/PS blend nanocomposites. Opt. Mater. 2015, 42, 335–339. [Google Scholar] [CrossRef]
- Alam, M.; Alandis, N.; Ansari, A.; Shaik, M.R. Optical and Electrical Studies of Polyaniline/ZnO Nanocomposite. J. Nanomater. 2013, 2013, 5. [Google Scholar] [CrossRef]
- Aziz, S.B. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. J. Electron. Mater. 2016, 45, 736–745. [Google Scholar] [CrossRef]
- El-Zahhar, A.A.; Ashraf, I.M.; Idris, A.M.; Zkria, A. Pronounced effect of PbI2 nanoparticles doping on optoelectronic properties of PVA films for photo-electronic applications. Phys. B Condens. Matter 2022, 630, 413604. [Google Scholar] [CrossRef]
- Kalyani, P.; Muthupandeeswari, T. Investigation on the altered properties of PVA filled magnesium oxide composite (PVA@xMgO) thin films. Polym. Bull. 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, J.; Guo, H. Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes 2022, 12, 347. https://doi.org/10.3390/membranes12030347
Liu B, Zhang J, Guo H. Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes. 2022; 12(3):347. https://doi.org/10.3390/membranes12030347
Chicago/Turabian StyleLiu, Baodong, Jianhua Zhang, and Hongge Guo. 2022. "Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials" Membranes 12, no. 3: 347. https://doi.org/10.3390/membranes12030347
APA StyleLiu, B., Zhang, J., & Guo, H. (2022). Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes, 12(3), 347. https://doi.org/10.3390/membranes12030347