Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Methods
2.1. Molecular Dynamics Modeling of Wild-Type KCNE3 in Lipid Bilayers
2.2. Analysis of the MD Simulation Data
3. Results and Discussions
Molecular Motion of KCNE3 in Different Phospholipid Bilayer Environments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MD | molecular dynamics; |
RMSD | root mean square deviation; |
RMSF | root mean square fluctuation; |
LMPC | lyso-myristoylphosphatidyl choline; |
DMPC | 1,2-dimyristoyl-sn-glycero-3-phosphocholine; |
DHPC | dihexanoylphosphatidylcholine; |
DMPG | dimyristoylphosphatidylglycerol; |
POPC | 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; |
POPG | 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); |
TMD | Transmembrane Domain; |
EPR | electron paramagnetic resonance; |
DEER | double electron-electron resonance. |
References
- Abbott, G.W. KCNE1 and KCNE3: The yin and yang of voltage-gated K+ channel regulation. Gene 2016, 576, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, A.; McCrossan, Z.A.; Abbott, G.W. MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating. J. Biol. Chem. 2004, 279, 7884–7892. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, B.C.; Waldegger, S.; Fehr, S.; Bleich, M.; Warth, R.; Greger, R.; Jentsch, T.J. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 2000, 403, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Barro-Soria, R.; Ramentol, R.; Liin, S.I.; Perez, M.E.; Kass, R.S.; Larsson, H.P. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions. Proc. Natl. Acad. Sci. USA 2017, 114, E7367–E7376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, S.; Toyoda, F.; Zankov, D.P.; Yoshida, H.; Makiyama, T.; Tsuji, K.; Honda, T.; Obayashi, K.; Ueyama, H.; Shimizu, W.; et al. Novel KCNE3 Mutation Reduces Repolarizing Potassium Current and Associated with Long QT Syndrome. Hum. Mutat. 2009, 30, 557–563. [Google Scholar] [CrossRef]
- Lundquist, A.L.; Manderfield, L.J.; Vanoye, C.G.; Rogers, C.S.; Donahue, B.S.; Chang, P.A.; Drinkwater, D.C.; Murray, K.T.; George, L.A., Jr. Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). J. Mol. Cell. Cardiol. 2005, 38, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Grahammer, F.; Warth, R.; Barhanin, J.; Bleich, M.; Hug, M.J. The small conductance K+ channel. 2001 KCNQ1—Expression, function, and subunit composition in murine trachea. J. Biol. Chem. 2001, 276, 42268–42275. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; MacKinnon, R. Structural Basis of Human KCNQ1 Modulation and Gating. Cell 2020, 180, 340–347.e9. [Google Scholar] [CrossRef]
- Barro-Soria, R.; Perez, M.E.; Larsson, H.P. KCNE3 acts by promoting voltage sensor activation in KCNQ1. Proc. Natl. Acad. Sci. USA 2015, 112, E7286–E7292. [Google Scholar] [CrossRef] [Green Version]
- Preston, P.; Wartosch, L.; Gunzel, D.; Fromm, M.; Kongsuphol, P.; Ousingsawat, J.; Kunzelmann, K.; Barhanin, J.; Warth, R.; Jentsch, T.J. Disruption of the K+ Channel beta-Subunit KCNE3 Reveals an Important Role in Intestinal and Tracheal Cl− Transport. J. Biol. Chem. 2010, 285, 7165–7175. [Google Scholar] [CrossRef] [Green Version]
- Boucherot, A.; Schreiber, R.; Kunzelmann, K. Regulation and properties of KCNQ1 (K(v)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator. J. Membr. Biol. 2001, 182, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lundby, A.; Ravn, L.S.; Svendsen, J.H.; Haunso, S.; Olesen, S.P.; Schmitt, N. KCNE3 mutation V17M identified in a patient with lone atrial fibrillation. Cell. Physiol. Biochem. 2008, 21, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Abbott, G.W.; Butler, M.H.; Goldstein, S.A.N. Phosphorylation and protonation of neighboring MiRP2 sites: Function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J. 2006, 20, 293–301. [Google Scholar] [CrossRef]
- Delpon, E.; Cordeiro, J.M.; Nunez, L.; Thomsen, P.E.B.; Guerchicoff, A.; Pollevick, G.D.; Wu, Y.S.; Kanters, J.K.; Larsen, C.T.; Burashnikov, E.; et al. Functional Effects of KCNE3 Mutation and Its Role in the Development of Brugada Syndrome. Circ.-Arrhythmia Electrophysiol. 2008, 1, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.F.; Liang, B.; Lin, J.; Liu, B.; Zhou, Q.S.; Yang, Y.Q. KCNE3 R53H substitution in familial atrial fibrillation. Chin. Med. J. 2005, 118, 1735–1738. [Google Scholar] [PubMed]
- Kroncke, B.M.; Van Horn, W.D.; Smith, J.; Kang, C.B.; Welch, R.C.; Song, Y.L.; Nannemann, D.P.; Taylor, K.C.; Sisco, N.J.; George, A.L.; et al. Structural basis for KCNE3 modulation of potassium recycling in epithelia. Sci. Adv. 2016, 2, e1501228. [Google Scholar] [CrossRef] [Green Version]
- Sansom, M.S.P.; Bond, P.J.; Deol, S.S.; Grottesi, A.; Haider, S.; Sands, Z.A. Molecular simulations and lipid-protein interactions: Potassium channels and other membrane proteins. Biochem. Soc. Trans. 2005, 33, 916–920. [Google Scholar] [CrossRef]
- Ramelot, T.A.; Yang, Y.; Sahu, I.D.; Lee, H.-W.; Xiao, R.; Lorigan, G.A.; Montelione, G.T.; Kennedy, M.A. NMR structure and MD simulations of the AAA protease intermembrane space domain indicates peripheral membrane localization within the hexaoligomer. FEBS Lett. 2013, 587, 3522–3528. [Google Scholar] [CrossRef] [Green Version]
- Sahu, I.D.; Craig, A.F.; Dunagum, M.M.; McCarrick, R.M.; Lorigan, G.A. Characterization of bifunctional spin labels for investigating the structural and dynamic properties of membrane proteins using EPR spectroscopy. J. Phys. Chem. B 2017, 121, 9185–9195. [Google Scholar] [CrossRef]
- Weng, J.; Wang, W. Molecular Dynamics Simulation of Membrane Proteins. In Protein Conformational Dynamics; Han, K.-L., Zhang, X., Yang, M.-J., Eds.; Springer: New York, NY, USA, 2013; pp. 305–329. [Google Scholar]
- Muller, M.P.; Jiang, T.; Sun, C.; Lihan, M.Y.; Pant, S.; Mahinthichaichan, P.; Trifan, A.; Tajkhorshid, E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem. Rev. 2019, 119, 6086–6161. [Google Scholar] [CrossRef]
- Pandey, B.; Grover, A.; Sharma, P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genom. 2018, 19, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.H.; Luo, Q.A.; Xue, X.G.; Li, Z.S. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J. Mol. Model. 2011, 17, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, Y.; Musgaard, M.; Olesen, C.; Schiott, B.; Moller, J.V.; Nissen, P.; Thogersen, L. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nat. Commun. 2011, 2, 304. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef] [PubMed]
- MacKerell, A.D.; Feig, M.; Brooks, C.L. Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 2004, 126, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Asare, I.K.; Perez, A.; Garcia, A.B.; Cruz, M.F.; Moura, A.C.M.; Campbell, C.C.; Scheyer, M.; Alao, J.P.; Kravats, A.N.; Lorigan, G.A.; et al. Studying structural and dynamic properties of KCNE3 in different membrane mimic systems using molecular dynamics simulations. Biophys. J. 2022, 121, 196a. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. Software news and updates—CHARNIM-GUI: A web-based grraphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD-Visual Molecular Dynamics. J. Molec.Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Schwieters, C.D.; Clore, G.M. The VMD-XPLOR visualization package for NMR structure refinement. J. Magn. Reson. 2001, 149, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.; Kim, T.; Im, W. Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE 2007, 2, e880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P.J.; Song, Y.; Van Horn, W.D.; Hustedt, E.J.; Schafer, J.M.; Hadziselimovic, A.; Beel, A.J.; Sanders, C.R. The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol. Science 2012, 336, 1168–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, I.D.; Craig, A.F.; Dunagan, M.M.; Troxel, K.R.; Zhang, R.; Meiberg, A.G.; Harmon, C.N.; MaCarrick, R.M.; Kroncke, B.M.; Sanders, C.R.; et al. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2015, 54, 6402–6412. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.B.; Vanoye, C.G.; Welch, R.C.; Van Horn, W.D.; Sanders, C.R. Functional Delivery of a Membrane Protein into Oocyte Membranes Using Bicelles. Biochemistry 2010, 49, 653–655. [Google Scholar] [CrossRef] [Green Version]
Average RMSD (Å) | |||
---|---|---|---|
POPC/POPG | POPC | DMPC | |
TMD | 14.7 ± 3.5 | 14.2 ± 3.1 | 9.7 ± 1.6 |
N-terminal helix | 18.6 ± 3.5 | 15.9 ± 3.3 | 11.3 ± 4.4 |
N-terminus | 23.5 ± 3.8 | 17.4 ± 3.1 | 13.3 ± 4.0 |
C-terminal helix | 10.4 ± 4.0 | 10.3 ± 2.5 | 9.5 ± 1.6 |
C-terminus | 11.3 ± 2.6 | 14.0 ± 3.9 | 15 ± 2.8 |
Average Interaction Energy (KCal/Mol) | |||
---|---|---|---|
POPC/POPG | POPC | DMPC | |
TMD | −313.7 ± 42.3 | −316.6 ± 37.5 | −317.5 ± 42.2 |
N-terminal helix | −5.6 ± 10.9 | −8.0 ± 14.8 | −5.4 ± 9.4 |
N-terminus | −465.3 ± 85.3 | −371.8 ± 105.3 | −401.3 ± 86.8 |
C-terminal helix | −4.9 ± 8.8 | −11.6 ± 20.2 | −7.5 ± 13.7 |
C-terminus | −162.5 ± 64.5 | −184.7 ± 63.7 | −200.6 ± 68.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asare, I.K.; Galende, A.P.; Garcia, A.B.; Cruz, M.F.; Moura, A.C.M.; Campbell, C.C.; Scheyer, M.; Alao, J.P.; Alston, S.; Kravats, A.N.; et al. Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations. Membranes 2022, 12, 469. https://doi.org/10.3390/membranes12050469
Asare IK, Galende AP, Garcia AB, Cruz MF, Moura ACM, Campbell CC, Scheyer M, Alao JP, Alston S, Kravats AN, et al. Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations. Membranes. 2022; 12(5):469. https://doi.org/10.3390/membranes12050469
Chicago/Turabian StyleAsare, Isaac K., Alberto Perez Galende, Andres Bastidas Garcia, Mateo Fernandez Cruz, Anna Clara Miranda Moura, Conner C. Campbell, Matthew Scheyer, John Paul Alao, Steve Alston, Andrea N. Kravats, and et al. 2022. "Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations" Membranes 12, no. 5: 469. https://doi.org/10.3390/membranes12050469
APA StyleAsare, I. K., Galende, A. P., Garcia, A. B., Cruz, M. F., Moura, A. C. M., Campbell, C. C., Scheyer, M., Alao, J. P., Alston, S., Kravats, A. N., Sanders, C. R., Lorigan, G. A., & Sahu, I. D. (2022). Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations. Membranes, 12(5), 469. https://doi.org/10.3390/membranes12050469