A Novel BiOCl Based Nanocomposite Membrane for Water Desalination
Abstract
:1. Introduction
2. Computational Method Detail
2.1. Molecular Structure
2.2. Water Desalination by Using ReaxFF Software
2.3. Electronic and Mechanical Properties
3. Results and Discussion
3.1. Molecular Structure
3.2. Bandgap
3.3. Density of State (DOS) and Projected Density of State (PDOS)
3.4. Mechanical Properties
3.4.1. Bulk and Shear Modulus
3.4.2. Young’s Modulus
3.4.3. Poisson Ratio
3.5. Water Desalination
Water Permeability and Salt Rejection
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis, and mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, Q.; Wang, Y.; Fu, Z.J.; Wang, Z.Y.; Mamba, B.; Sun, S.P. Designing Durable Self-cleaning Nanofiltration Membranes via Sol-gel Assisted Interfacial Polymerization for Textile Wastewater Treatment. Sep. Purif. Technol. 2022, 289, 120752. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Song, H.; Shao, J.; He, Y.; Liu, B.; Zhong, X. Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J. Membr. Sci. 2012, 405–406, 48–56. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Liu, C.-M.; Huang, F.-Q.; Zheng, C.; Wang, W.-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 2006, 68, 125–129. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Q.; Yang, L.; Luo, X.; Wang, A.; Luo, S.; Dionysiou, D.D. Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl. Catal. B Environ. 2018, 238, 61–69. [Google Scholar] [CrossRef]
- Tang, R.; Su, H.; Sun, Y.; Zhang, X.; Li, L.; Liu, C.; Wang, B.; Zeng, S.; Sun, D. Facile fabrication of Bi2WO6/Ag2S heterostructure with enhanced visible-light-driven photocatalytic performances. Nanoscale Res. Lett. 2016, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, R.; Asadi, A.; Oviroh, P.O.; Jen, T.-C. One-Pot Synthesized Visible Light-Driven BiOCl/AgCl/BiVO4 n-p Heterojunction for Photocatalytic Degradation of Pharmaceutical Pollutants. Materials 2019, 12, 2297. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J. Colloid Interface Sci. 2009, 333, 242–248. [Google Scholar] [CrossRef]
- Yong, S.; Joo, Y.; Hak, M.; Kumar, A.; Jung, D.; In, W. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J. Catal. 2009, 262, 144–149. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, L.; Zhang, Y.; Zhang, X.; Dong, L.; Wang, S.; He, Y. Preparation and photocatalytic activity of graphene-modified Ag2S composite. J. Exp. Nanosci. 2016, 11, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.A.; Ma, R.; Choi, M.Y.; Kim, T.K. Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl. Surf. Sci. 2015, 324, 725–735. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scm.com. Search-Amsterdam Modeling Suite: Making Computational Chemistry Work for You Software for Chemistry & Materials. Available online: https://www.scm.com/search.php?cat=&search=forcefield (accessed on 14 February 2020).
- Narasimhan, T.N. Of wetting and osmotic transport. Phys. Today 2010, 63, 60. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Research Opportunities in Biology. Molecular Structure and Function. In Opportunities in Biology; Nacional Academic Press: Washington, DC, USA, 1989. Available online: https://www.ncbi.nlm.nih.gov/books/NBK217812/ (accessed on 1 January 2020).
- Deaven, D.M.; Ho, K.M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 1995, 75, 288–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yin, S.; Huang, R.; Zhou, Y.; Luo, S.; Au, C. Facile synthesis of BiOCl nano-flowers of narrow band gap and their visible-light-induced photocatalytic property. Catal. Commun. 2012, 23, 54–57. [Google Scholar] [CrossRef]
- Vogel, R.; Hoyer, P.; Weller, H. Quantum-Sized PbS, CdS, AgzS, Sb&, and Bi& Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem. 1994, 98, 3183–3188. [Google Scholar]
- Wang, J.; Liu, J.; Wang, B.; Zhu, L.; Hu, J.; Xu, H. Fabrication of α-Bi2O3 Microrods by Solvothermal Method and Their Photocatalytic Performance. Chem. Lett. 2014, 43, 547–549. [Google Scholar] [CrossRef]
- Das, T.; Datta, S. Thermochemical stability, and electronic and dielectric properties of Janus bismuth oxyhalide BiOX (X = Cl, Br, I) monolayers. Nanoscale Adv. 2020, 2, 1090–1104. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, M.; Meng, J.; Li, Q.; Yang, J. Single- and few-layer BiOI as promising photocatalysts for solar water splitting. RSC Adv. 2017, 7, 24446–24452. [Google Scholar] [CrossRef] [Green Version]
- Morawiec, A. Review of Deterministic Methods of Calculation of Polycrystal Elastic Constants. Textures Microstruct. 1994, 22, 139–167. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.; Pané, S.; Nelson, B.J.; Baró, M.D.; Roldán, M.; Sort, J.; Pellicer, E. 3D hierarchically porous Cu–BiOCl nanocomposite films: One-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties. Nanoscale 2013, 5, 12542–12550. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Data Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 3. [Google Scholar]
- Gogoi, A.; Konch, T.J.; Raidongia, K.; Anki Reddy, K. Water and salt dynamics in multilayer graphene oxide (GO) membrane: Role of lateral sheet dimensions. J. Membr. Sci. 2018, 563, 785–793. [Google Scholar] [CrossRef]
- Ibrahim, Q.; Akbarzadeh, R.; Gharbia, S. The electronic properties and water desalination performance of a photocatalytic TiO2/MoS2 nanocomposites bilayer membrane: A molecular dynamic simulation. J. Mol. Modeling 2022, 28, 610. [Google Scholar] [CrossRef]
- Ibrahim, Q.; Akbarzadeh, R. A photocatalytic TiO2/graphene bilayer membrane design for water desalination: A molecular dynamic simulation. J. Mol. Modeling 2020, 26, 165. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, V.; Barati Farimani, A. Why is single-layer MoS2 a more energy efficient membrane for water desalination? ACS Energy Lett. 2020, 5, 2217–2222. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; Lin, L.C.; Grossman, J.C. Multilayer nanoporous graphene membranes for water desalination. Nano Lett. 2016, 16, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chu, R.; Shi, W.; Hu, Y. Quantitively unveiling the activity-structure relationship of polyamide membrane: A molecular dynamics simulation study. Desalination 2022, 528, 115640. [Google Scholar] [CrossRef]
Nanocomposite | Ag2S | Bi2O3 | BiOCl | |
---|---|---|---|---|
Lattice constants (Å) | a | 4.23 | 5.6607 | 3.89 |
b | 6.91 | 5.6607 | 3.89 | |
c | 7.87 | 5.6607 | 7.37 | |
α | 90° | 90° | 90° | |
β | 99.58° | 90° | 90° | |
γ | 90° | 90° | 90° |
Material | Bandgap (eV) | Band Type | CB (eV) | VB (eV) |
---|---|---|---|---|
BiOCl | 2.671 | Direct | 2.241 | 0.430 |
BiOCl/Bi2O3 | 0.762 | Direct | 0.662 | 0.1 |
BiOCl/Ag2S | 2.398 | In-direct | 2.101 | 0.297 |
Membrane | Test Condition | Salt Rejection | Permeability or Flux | Young’s Modulus | Reference |
---|---|---|---|---|---|
MoS2 | 100 MPa pressure, 10 Å thickness, 100 K | 99% | 9.36 L cm−2 day−1 MPa−1 | 270 ± 100 GPa | [31] |
Graphene | 100 MPa, bilayer | 85–100% | 209 L m−2 h−1 bar−1 | - | [32] |
Polyamide | 100 MPa, 1.28–5.40 nm thickness, 298.15 K | 60–100% | 2 K gm−2 h−1 × 103 | - | [33] |
BiOCl | 100 MPa pressure, 11.2 Å thickness, 323.15 K | - | - | 200 ± 50 GPa | [This work] |
BiOCl/Ag2S | 100 MPa pressure, 11.2 Å thickness, 323.15K | 85% | 3 mm g cm−2 s−1 bar−1 × 10−7 | 310 ± 50 GPa | [This work] |
BiOCl/Bi2O3 | 100 MPa pressure, 11.2 Å thickness, 323.15 K | 86% | 2 mm g cm−2 s−1 bar−1 × 10−7 | 420 ± 50 GPa | [This work] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbarzadeh, R.; Ndungu, P.G. A Novel BiOCl Based Nanocomposite Membrane for Water Desalination. Membranes 2022, 12, 505. https://doi.org/10.3390/membranes12050505
Akbarzadeh R, Ndungu PG. A Novel BiOCl Based Nanocomposite Membrane for Water Desalination. Membranes. 2022; 12(5):505. https://doi.org/10.3390/membranes12050505
Chicago/Turabian StyleAkbarzadeh, Rokhsareh, and Patrick Gathura Ndungu. 2022. "A Novel BiOCl Based Nanocomposite Membrane for Water Desalination" Membranes 12, no. 5: 505. https://doi.org/10.3390/membranes12050505
APA StyleAkbarzadeh, R., & Ndungu, P. G. (2022). A Novel BiOCl Based Nanocomposite Membrane for Water Desalination. Membranes, 12(5), 505. https://doi.org/10.3390/membranes12050505