A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Ce Doped g-C3N4 Hybrid Material
2.3. Synthesis of CNCe Incorporated Composite Membrane
2.4. Characterization
2.4.1. Chemical Structure Analysis
2.4.2. Ion Exchange Capacity (IEC)
2.4.3. Proton Conductivity
2.4.4. Water Uptake and Swelling Ratio
2.4.5. Thermal and Mechanical Stability
2.4.6. Oxidative Stability
2.4.7. Membrane Electrode Assembly and Fuel Cell Performance
3. Results and Discussion
3.1. Chemical and Physical Structure of CN and CNCe
3.2. Chemical and Physical Structure of Composite Membrane
3.3. Thermal and Mechanical Properties
3.4. Water Uptake and Swelling Ratio of Composite Membranes
3.5. Proton Conductivity
3.6. Chemical Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manohar, M.; Kim, D. Advantageous of hybrid fuel cell operation under self-humidification for energy efficient bipolar membrane. ACS Sustain. Chem. Eng. 2019, 7, 16493–16500. [Google Scholar] [CrossRef]
- Tinh, V.D.C.; Dukjoon, K. Enhancement of oxidative stability of PEM fuel cell by introduction of HO• radical scavenger in Nafion ionomer. J. Membr. Sci. 2020, 613, 118517. [Google Scholar] [CrossRef]
- Lin, J.-H.; Chen, W.-H.; Su, S.-H.; Su, Y.-J.; Ko, T.-H. Washing experiment of the gas diffusion layer in a proton-exchange membrane fuel cell. Energy 2008, 22, 2533–2538. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Zhang, Z.; Yang, Z.; Li, Y.; Zhang, H.; Yang, X.; Wu, H.; Jiang, Z. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Adv. Funct. Mater. 2012, 22, 4539–4546. [Google Scholar] [CrossRef]
- Swider-Lyons, K.E.; Campbell, S.A. Physical chemistry research toward proton exchange membrane fuel cell advancement. J. Phys. Chem. Lett. 2013, 4, 393–401. [Google Scholar] [CrossRef]
- Diao, H.; Yan, F.; Qiu, L.; Lu, J.; Lu, X.; Lin, B.; Li, Q.; Jiang, S.; Liu, W.; Liu, J.; et al. High performance cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid)-based proton exchange membranes for fuel cells. Macromolecules 2010, 43, 6398–6405. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, X.; Wu, H.; Wang, J.; Wang, Y. Proton conducting CS/P(AA-AMPS) membrane with reduced methanol permeability for DMFCs. J. Power Sources 2008, 180, 143–153. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy. 2010, 17, 9349–9384. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, D. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kodir, A.; Shin, D.; Park, S.-H.; Bae, B. Perfluorinated composite membranes with organic antioxidants for chemically durable fuel cells. J. Electrochim. Acta 2019, 298, 901–909. [Google Scholar] [CrossRef]
- Danilczuk, M.; Schlick, S.; Coms, F. Degradation Mechanism of Perfluorinated Membranes. In The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization; Schlick, S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 19–53. [Google Scholar]
- Vo, D.C.T.; Nguyen, M.D.T.; Kim, D. Engineering, Dual sulfonated poly (arylene ether ketone) membrane grafted with 15-crown-5-ether for enhanced proton conductivity and anti-oxidation stability. Mol. Syst. Des. Eng. 2019, 4, 901–911. [Google Scholar] [CrossRef]
- Park, Y.; Kim, D. Chemical stability enhancement of Nafion membrane by impregnation of a novel organic· OH radical scavenger, 3, 4-dihydroxy-cinnamic acid. J. Memb. Sci. 2018, 566, 1–7. [Google Scholar] [CrossRef]
- Kim, K.; Bae, J.; Lim, M.-Y.; Heo, P.; Choi, S.-W.; Kwon, H.-H.; Lee, J.-C. Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications. J. Memb. Sci. 2017, 525, 125–134. [Google Scholar] [CrossRef]
- Oh, S.I.; Lee, S.Y.; Ko, J.J.; Han, J.H.; Kim, H.-J. The Synthesis of Cerium Oxide Antioxidant Supported on Silica Nanotube for Polymer Electrolyte Membrane Fuel Cell. ECS Trans. 2018, MA2018-01, 1785. [Google Scholar] [CrossRef]
- Coms, F.D.; Schlick, S.; Danilczuk, M. Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications. Chem. Membr. Used Fuel Cells Degrad. Stab. 2018, 12, 75–106. [Google Scholar]
- Wang, L.; Advani, S.G.; Prasad, A.K. Degradation reduction of polymer electrolyte membranes using CeO2 as a free-radical scavenger in catalyst layer. Electrochim. Acta 2013, 109, 775–780. [Google Scholar] [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420. [Google Scholar] [CrossRef]
- Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 2008, 40, 264–267. [Google Scholar] [CrossRef]
- Mansor, N.; Miller, T.S.; Dedigama, I.; Jorge, A.B.; Jia, J.; Brázdová, V.; Mattevi, C.; Gibbs, C.; Hodgson, D.; Shearing, P.R.; et al. Graphitic carbon nitride as a catalyst support in fuel cells and electrolyzers. Electrochim. Acta 2016, 222, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Feng, X.; Wang, X.; Müllen, K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. 2011, 123, 5451–5455. [Google Scholar] [CrossRef]
- Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 1989, 19, 19–27. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Ang, T.P.; Chan, Y.M. Comparison of the melon nanocomposites in structural properties and photocatalytic activities. J. Phys. Chem. C 2011, 115, 15965–15972. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.; Wang, X. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 2011, 21, 13032–13039. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Xu, H.; Xu, Y.; Xia, J.; Wang, K.; Li, H.; Cheng, X. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv. 2013, 3, 22269–22279. [Google Scholar] [CrossRef]
- Thuc, V.D.; Tinh, V.D.C.; Kim, D. Simultaneous improvement of proton conductivity and chemical stability of Nafion membranes via embedment of surface-modified ceria nanoparticles in membrane surface. J. Membr. Sci. 2022, 642, 119990. [Google Scholar] [CrossRef]
Membrane Type | Hydration Number | Residual Weight | ||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
Nafion | 14.65 | 93.12 ± 0.5 | 86.24 ± 0.8 | 79.62 ± 0.7 |
Nafion/CNCe | 8.27 | 95.35 ± 0.5 | 88.41 ± 0.6 | 84.39 ± 0.5 |
Nafion/Ce | 7.41 | 96.66 ± 0.5 | 94.87 ± 0.6 | 82.55 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.P.; Kim, D. A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane. Membranes 2022, 12, 521. https://doi.org/10.3390/membranes12050521
Sharma PP, Kim D. A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane. Membranes. 2022; 12(5):521. https://doi.org/10.3390/membranes12050521
Chicago/Turabian StyleSharma, Prem P., and Dukjoon Kim. 2022. "A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane" Membranes 12, no. 5: 521. https://doi.org/10.3390/membranes12050521
APA StyleSharma, P. P., & Kim, D. (2022). A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane. Membranes, 12(5), 521. https://doi.org/10.3390/membranes12050521