Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Membrane Fabrication
2.4. Chemical Plating
2.5. Characterization of Actuator Membrane
2.6. Ion-Exchange Capacity (IEC)
2.7. Water Uptake (WU)
2.8. Water Loss (WL)
2.9. Proton Conductivity (PC)
2.10. Electromechanical Study (ES)
3. Results and Discussion
3.1. IEC, PC, WU, and WL
3.2. FTIR Analysis
3.3. X-ray Diffraction (XRD) Analysis
3.4. Thermogravimetric Analysis (TGA) Study
3.5. SEM Study
3.6. EDX
3.7. Electromechanical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Ren, J.; Xu, J.; Meng, L.; Zhao, P.; Wang, H.; Wang, Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J. Membr. Sci. 2021, 630, 119304. [Google Scholar] [CrossRef]
- Xue, S.Z.B.; Yao, J.; Wang, F.; Zheng, J.F.; Lia, S.L.; Zhang, S.B. Novel protonexchange membranes based on sulfonated-phosphonatedpoly(p-phenylene-co-arylether ketone) terpolymers with microblock structures for passive direct methanol fuel cells. J. Membr. Sci. 2020, 594, 117466. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Ohtaki, M.; Ngo, V.N.; Cao, M.T.; Nogami, M. Structure and morphology of platinumnanoparticles with critical new issues of low- and high-index facets. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025005. [Google Scholar] [CrossRef] [Green Version]
- Abu-Saied, M.A.; El-Desouky, E.A.; Soliman, E.A.; Abd El-Naim, G. Novel sulphonated poly (vinyl chloride)/poly (2-acrylamido-2-methylpropane sulphonic acid) blends-based polyelectrolyte membranes for direct methanol fuel cells. Polym. Test. 2020, 89, 106604. [Google Scholar] [CrossRef]
- Luqman, M.; Shaikh, H.M.; Anis, A.; Al-Zahrani, S.M.; Alam, M.A. A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly(ether ether ketone)–polyaniline composite membrane. Polymers 2022, 14, 668. [Google Scholar] [CrossRef]
- Ionov, L. Polymeric Actuators. Langmuir 2005, 31, 5015–5024. [Google Scholar] [CrossRef]
- Eldin, M.; Abu-Saied, M.; Elzatahry, A.; El-Khatib, K.; Hassan, E.; El-Sabbah, M. Novel acid-base poly vinyl chloride-doped ortho-phosphoric acid membranes for fuel cell applications. Int. J. Electrochem. Sci. 2011, 6, 5417–5429. [Google Scholar]
- Qiao, J.; Hamaya, T.; Okada, T. New highly proton conductive polymer membranes poly (vinyl alcohol)–2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS). J. Mater. Chem. 2005, 15, 4414–4423. [Google Scholar] [CrossRef]
- Eldin, M.; Elzatahry, A.; El-Khatib, K.; Hassan, E.; El-Sabbah, M.; Abu-Saied, M. Novel grafted nafion membranes for proton-exchange membrane fuel cell applications. J. Appl. Polym. Sci. 2011, 119, 120–133. [Google Scholar] [CrossRef]
- Jain, R.K.; Khan, A.; Inamuddin; Asiri, A.M. Design and development of non-perfluorinated ionic polymer metal composite-based flexible link manipulator for robotics assembly. Polym. Compos. 2019, 40, 2582–2593. [Google Scholar] [CrossRef]
- Khan, A.; Jain, R.K.; Banerjee, P.; Ghosh, B.; Asiri, A.M. Development, characterization and electromechanical actuation behavior of ionic polymer metal composite actuator based on sulfonated poly(1,4-phenylene ether-ether-sulfone)/carbon nanotubes. Sci. Rep. 2018, 8, 9909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.J.; Ramsay, K. Review and development of electromechanical actuators for improved transmission control and efficiency. SAE Trans. 2004, 113, 908–919. [Google Scholar] [CrossRef]
- Saint Martin, L.B.; Mendes, R.U.; Cavalca, K.L. Electromagnetic actuators for controlling flexible cantilever beams. Struct. Control Health Monit. 2018, 25, e2043. [Google Scholar] [CrossRef]
- Luqman, M.; Shaikh, H.; Anis, A.; Al-Zahrani, S.M.; Hamidi, A.; Inamuddin. Platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline-based hybrid ionic polymer metal composite membrane for bending actuation applications. Sci. Rep. 2022, 12, 4467. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin; Jain, R.K.; Naushad, M. Fabrication of a silver nano powder embedded kraton polymer actuator and its characterization. RSC Adv. 2015, 5, 91564. [Google Scholar] [CrossRef]
- Ahamed, M.I.; Inamuddin; Asiri, A.M.; Luqman, M. Preparation, physicochemical characterization, and microrobotics applications of polyvinyl chloride-(PVC-) based PANI/PEDOT: PSS/ZrP composite cation-exchange membrane. Adv. Mater. Sci. Eng. 2019, 2019, 4764198. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.Y.; Huang, Y.F.; Zhou, Y.Q.; Liu, H.T.; Cai, Y.; Lu, S.X.; Yue, Y. Homogeneously dispersed HPW/graphene for high efficient catalytic oxidative desulfurization prepared by electrochemical deposition. Appl. Surf. Sci. 2019, 484, 917–924. [Google Scholar] [CrossRef]
- Luqman, M.; Lee, J.W.; Moon, K.K.; Yoo, Y.T. Sulfonated polystyrene-based ionic polymer–metal composite (IPMC) actuator. J. Ind. Eng. Chem. 2011, 17, 49–55. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin; Jain, R.K.; Luqman, M.; Asiri, A.M. Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sens. Actuators A Phys. 2018, 280, 114–124. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Q.; Huang, H.; Li, W.; Huang, Y.; Luo, J. Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J. Power Sources 2008, 184, 338–343. [Google Scholar] [CrossRef]
- Gilois, B.; Goujon, F.; Fleury, A.; Soldera, A.; Ghoufi, A. Water nano-diffusion through the Nafion fuel cell membrane. J. Membr. Sci. 2020, 602, 117958. [Google Scholar] [CrossRef]
- Ru, C.Y.; Gu, Y.Y.; Duan, Y.T.; Zhao, C.J.; Na, H. Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly (arylene ether ketones) for direct methanol fuel cells. J. Membr. Sci. 2019, 573, 439–447. [Google Scholar] [CrossRef]
- Donnadio, A.; Narducci, R.; Casciola, M.; Marmottini, F.; D’Amato, R.; Jazestani, M.; Chiniforoshan, H.; Costantino, F. Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl. Mater. Interfaces 2017, 9, 42239–42246. [Google Scholar] [CrossRef]
- Inamuddin; Khan, A.; Jain, R.K.; Naushad, M. Development of sulfonated poly(vinyl alcohol)/polpyrrole based ionic polymer metal composite (IPMC) actuator and its characterization. Smart Mater. Struct. 2015, 24, 095003. [Google Scholar] [CrossRef]
- Inamuddin; Khan, A.; Luqman, M.; Dutta, A. Kraton based ionic polymer metal composite (IPMC) actuator. Sens. Actuators A Phys. 2014, 216, 295–300. [Google Scholar] [CrossRef]
- Xu, J.M.; Ma, L.; Han, H.L.; Ni, H.Z.; Wang, Z.; Zhang, H.X. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications. Electrochim. Acta 2014, 146, 688–696. [Google Scholar] [CrossRef]
- Xie, H.X.; Tao, D.; Ni, J.P.; Xiang, X.Z.; Gao, C.M.; Wang, L. Synthesis and properties of highly branched star-shaped sulfonated block polymers with sulfoalkyl pendant groups for use as proton exchange membranes. J. Membr. Sci. 2016, 497, 55–66. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin; Jain, R.K. Easy, operable ionic polymer metal composite actuator based on a platinum-coated sulfonated poly(vinyl alcohol)–polyaniline composite membrane. J. Appl. Polym. Sci. 2016, 133, 43787. [Google Scholar] [CrossRef]
Voltage | Deflection (mm) | ||||
---|---|---|---|---|---|
(V) | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 |
Trial 1 | 0 | 6.5 | 9.0 | 11.0 | 15.0 |
Trial 2 | 0 | 6.0 | 8.9 | 10.8 | 15.1 |
Trial 3 | 0 | 6.3 | 8.8 | 10.9 | 15.0 |
Trial 4 | 0 | 6.8 | 8.6 | 11.1 | 15.2 |
Trial 5 | 0 | 7.0 | 8.7 | 10.6 | 15.3 |
Voltage (V) | F1 (mN) | F2 (mN) | F3 (mN) | F4 (mN) | F5 (mN) | Average Force Value (F) in mN |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.032 | 0.031 | 0.029 | 0.032 | 0.03 | 0.0308 |
2 | 0.096 | 0.092 | 0.092 | 0.095 | 0.092 | 0.0934 |
3 | 0.192 | 0.19 | 0.196 | 0.192 | 0.19 | 0.192 |
4 | 0.202 | 0.212 | 0.232 | 0.222 | 0.242 | 0.222 |
Mean | 0.107 | |||||
Standard Deviation | 0.087 | |||||
Repeatability | 91.29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luqman, M.; Anis, A.; Shaikh, H.M.; Al-Zahrani, S.M.; Alam, M.A. Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane. Membranes 2022, 12, 651. https://doi.org/10.3390/membranes12070651
Luqman M, Anis A, Shaikh HM, Al-Zahrani SM, Alam MA. Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane. Membranes. 2022; 12(7):651. https://doi.org/10.3390/membranes12070651
Chicago/Turabian StyleLuqman, Mohammad, Arfat Anis, Hamid M. Shaikh, Saeed M. Al-Zahrani, and Mohammad Asif Alam. 2022. "Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane" Membranes 12, no. 7: 651. https://doi.org/10.3390/membranes12070651
APA StyleLuqman, M., Anis, A., Shaikh, H. M., Al-Zahrani, S. M., & Alam, M. A. (2022). Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane. Membranes, 12(7), 651. https://doi.org/10.3390/membranes12070651