Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance
Abstract
:1. Introduction
2. Polydopamine
3. Modification Techniques of (UF, MF, NF, and RO) Membranes through Co-Incorporation of PDA and NPs
3.1. Two-Step Modifications (PDA-Based Post-Functionalization)
3.2. One-Step Modification Method (Dopamine-Assisted Co-Deposition)
3.3. Functionalization of NPs by PDA
3.3.1. PDA-f-NPs Coating and Deposition Modification Methods
3.3.2. PDA-f-NPs Blending Modification Method
3.3.3. PDA-f-NPs during IP Modification Method
4. Modification Techniques of FO Membranes through Co-Incorporation of PDA and NPs
4.1. PDA-Based Modification
4.2. Combination of PDA and NPs-Based Modification
5. Graphene Oxide (GO) Nanoparticles
5.1. Unfunctionalized GO NPs
5.2. Dopamine-Functionalized GO NPs
6. Membrane’s Modification Based on PDA Nanoparticles Incorporation
7. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hafiz, M.A.N. Engineering a Fertilizing Draw Solution for Irrigation Using Forward Osmosis/Reverse Osmosis Hybrid System. Ph.D. Thesis, Qatar University, Doha, Qatar, 2019. [Google Scholar]
- Wang, J.; Liu, X. Forward Osmosis Technology for Water Treatment: Recent Advances and Future Perspectives. J. Clean. Prod. 2020, 280, 124354. [Google Scholar] [CrossRef]
- Islam, M.S.; Touati, K.; Rahaman, M.S. High Flux and Antifouling Thin-Film Nanocomposite Forward Osmosis Membrane with Ingrained Silica Nanoparticles. ACS ES&T Eng. 2021, 1, 467–477. [Google Scholar] [CrossRef]
- Rezaei-DashtArzhandi, M.; Sarrafzadeh, M.H.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Mohamed, M.A. Development of Novel Thin Film Nanocomposite Forward Osmosis Membranes Containing Halloysite/Graphitic Carbon Nitride Nanoparticles towards Enhanced Desalination Performance. Desalination 2018, 447, 18–28. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Yu, M.; Wang, Y.; Gao, T.; Yang, F. Conductive Thin Film Nanocomposite Forward Osmosis Membrane (TFN-FO) Blended with Carbon Nanoparticles for Membrane Fouling Control. Sci. Total Environ. 2019, 697, 134050. [Google Scholar] [CrossRef] [PubMed]
- Alkhouzaam, A.; Qiblawey, H. Functional GO-Based Membranes for Water Treatment and Desalination: Fabrication Methods, Performance and Advantages. A Review. Chemosphere 2021, 274, 129853. [Google Scholar] [CrossRef]
- Wu, W.; Shi, Y.; Liu, G.; Fan, X.; Yu, Y. Recent Development of Graphene Oxide Based Forward Osmosis Membrane for Water Treatment: A Critical Review. Desalination 2020, 491, 114452. [Google Scholar] [CrossRef]
- Perera, D.H.N.; Nataraj, S.K.; Thomson, N.M.; Sepe, A.; Hüttner, S.; Steiner, U.; Qiblawey, H.; Sivaniah, E. Room-Temperature Development of Thin Film Composite Reverse Osmosis Membranes from Cellulose Acetate with Antibacterial Properties. J. Memb. Sci. 2013, 453, 212–220. [Google Scholar] [CrossRef]
- Pejman, M.; Firouzjaei, M.D.; Aktij, S.A.; Das, P.; Zolghadr, E.; Jafarian, H.; Shamsabadi, A.A.; Elliott, M.; Esfahani, M.R.; Sangermano, M.; et al. Improved Antifouling and Antibacterial Properties of Forward Osmosis Membranes through Surface Modification with Zwitterions and Silver-Based Metal Organic Frameworks. J. Memb. Sci. 2020, 611, 118352. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M.; Atieh, M. Synthesis of Graphene Oxides Particle of High Oxidation Degree Using a Modified Hummers Method. Ceram. Int. 2020, 46, 23997–24007. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Yang, H.; Fan, G.; Ding, A.; Liang, H.; Li, G.; Ren, N.; Van der Bruggen, B. Mussel-Inspired Polydopamine Modification of Polymeric Membranes for the Application of Water and Wastewater Treatment: A Review. Chem. Eng. Res. Des. 2020, 157, 195–214. [Google Scholar] [CrossRef]
- Saraswathi, M.S.S.A.; Rana, D.; Alwarappan, S.; Gowrishankar, S.; Vijayakumar, P.; Nagendran, A. Polydopamine Layered Poly (Ether Imide) Ultrafiltration Membranes Tailored with Silver Nanoparticles Designed for Better Permeability, Selectivity and Antifouling. J. Ind. Eng. Chem. 2019, 76, 141–149. [Google Scholar] [CrossRef]
- Bahamonde Soria, R.; Zhu, J.; Gonza, I.; Van der Bruggen, B.; Luis, P. Effect of (TiO2: ZnO) Ratio on the Anti-Fouling Properties of Bio-Inspired Nanofiltration Membranes. Sep. Purif. Technol. 2020, 251, 117280. [Google Scholar] [CrossRef]
- He, M.; Wang, L.; Lv, Y.; Wang, X.; Zhu, J.; Zhang, Y.; Liu, T. Novel Polydopamine/Metal Organic Framework Thin Film Nanocomposite Forward Osmosis Membrane for Salt Rejection and Heavy Metal Removal. Chem. Eng. J. 2020, 389, 124452. [Google Scholar] [CrossRef]
- Al-Shaeli, M.; Hegab, H.M.; Fang, X.; He, L.; Liu, C.; Wang, H.; Zhang, K.; Ladewig, B.P. Reduced Fouling Ultrafiltration Membranes via In-Situ Polymerisation Using Polydopamine Functionalised Titanium Oxide. ChemRxiv. Cambridge Open Engag. 2020. [Google Scholar] [CrossRef]
- Tom, S. Development of Polydopamine Coated Membranes: Fabrication, Characterization and Morphology. Inst. Super. Técnico Lisboa. Técnico Lisb. 2016. [Google Scholar]
- Wang, T.; Qiblawey, H.; Sivaniah, E.; Mohammadian, A. Novel Methodology for Facile Fabrication of Nano Filtration Membranes Based on Nucleophilic Nature of Polydopamine. J. Memb. Sci. 2016, 511, 65–75. [Google Scholar] [CrossRef]
- Wang, T.; Qiblawey, H.; Judd, S.; Benamor, A.; Nasser, M.S.; Mohammadian, A. Fabrication of High Flux Nanofiltration Membrane via Hydrogen Bonding Based Co-Deposition of Polydopamine with Poly(Vinyl Alcohol). J. Memb. Sci. 2018, 552, 222–233. [Google Scholar] [CrossRef]
- Davari, S.; Omidkhah, M.; Salari, S. Role of Polydopamine in the Enhancement of Binding Stability of TiO2 Nanoparticles on Polyethersulfone Ultrafiltration Membrane. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 622, 126694. [Google Scholar] [CrossRef]
- Subair, R.; Prakash, B.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M. Polydopamine Modified Membranes with in Situ Synthesized Gold Nanoparticles for Catalytic and Environmental Applications. Chem. Eng. J. 2016, 295, 358–369. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, C.; Wang, Z.; Xu, Y.; Zhao, W.; Sun, S.; Zhao, C. Co-Deposition towards Mussel-Inspired Antifouling and Antibacterial Membranes by Using Zwitterionic Polymers and Silver Nanoparticles. J. Mater. Chem. B 2017, 5, 7186–7193. [Google Scholar] [CrossRef] [PubMed]
- Pi, J.K.; Yang, H.C.; Wan, L.S.; Wu, J.; Xu, Z.K. Polypropylene Microfiltration Membranes Modified with TiO2 Nanoparticles for Surface Wettability and Antifouling Property. J. Memb. Sci. 2015, 500, 8–15. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Tsehaye, M.T.; Li, J.; Dong, G.; Yuan, S.; Li, X.; Zhang, Y.; Liu, J.; Van Der Bruggen, B. High Flux Electroneutral Loose Nanofiltration Membranes Based on Rapid Deposition of Polydopamine/Polyethyleneimine. J. Mater. Chem. A 2017, 5, 14847–14857. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, H.C.; Liang, H.Q.; Wan, L.S.; Xu, Z.K. Nanofiltration Membranes via Co-Deposition of Polydopamine/Polyethylenimine Followed by Cross-Linking. J. Memb. Sci. 2014, 476, 50–58. [Google Scholar] [CrossRef]
- Zhu, J.; Uliana, A.; Wang, J.; Yuan, S.; Li, J.; Tian, M.; Simoens, K.; Volodin, A.; Lin, J.; Bernaerts, K.; et al. Elevated Salt Transport of Antimicrobial Loose Nanofiltration Membranes Enabled by Copper Nanoparticles: Via Fast Bioinspired Deposition. J. Mater. Chem. A 2016, 4, 13211–13222. [Google Scholar] [CrossRef]
- Lv, Y.; Du, Y.; Qiu, W.Z.; Xu, Z.K. Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimine with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability. ACS Appl. Mater. Interfaces 2016, 9, 2966–2972. [Google Scholar] [CrossRef]
- Lv, Y.; Du, Y.; Chen, Z.X.; Qiu, W.Z.; Xu, Z.K. Nanocomposite Membranes of Polydopamine/Electropositive Nanoparticles/Polyethyleneimine for Nanofiltration. J. Memb. Sci. 2017, 545, 99–106. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, J.; Li, Y.; Huang, L.; Zhang, H.; Chen, L. A Novel Pd Decorated Polydopamine-SiO2/PVA Electrospun Nanofiber Membrane for Highly Efficient Degradation of Organic Dyes and Removal of Organic Chemicals and Oils. J. Clean. Prod. 2020, 275, 122937. [Google Scholar] [CrossRef]
- Zeng, G.; Wei, K.; Yang, D.; Yan, J.; Zhou, K.; Patra, T.; Sengupta, A.; Chiao, Y.H. Improvement in Performance of PVDF Ultrafiltration Membranes by Co-Incorporation of Dopamine and Halloysite Nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124142. [Google Scholar] [CrossRef]
- Ye, W.; Liu, H.; Lin, F.; Lin, J.; Zhao, S.; Yang, S.; Hou, J.; Zhou, S.; Van Der Bruggen, B. High-Flux Nanofiltration Membranes Tailored by Bio-Inspired Co-Deposition of Hydrophilic g-C3N4 Nanosheets for Enhanced Selectivity towards Organics and Salts. Environ. Sci. Nano 2019, 6, 2958–2967. [Google Scholar] [CrossRef]
- You, X.; Wu, H.; Su, Y.; Yuan, J.; Zhang, R.; Yu, Q.; Wu, M.; Jiang, Z.; Cao, X. Precise Nanopore Tuning for a High-Throughput Desalination Membrane via Co-Deposition of Dopamine and Multifunctional POSS. J. Mater. Chem. A 2018, 6, 13191–13202. [Google Scholar] [CrossRef]
- Wu, M.; Yuan, J.; Wu, H.; Su, Y.; Yang, H.; You, X.; Zhang, R.; He, X.; Khan, N.A.; Kasher, R.; et al. Ultrathin Nanofiltration Membrane with Polydopamine-Covalent Organic Framework Interlayer for Enhanced Permeability and Structural Stability. J. Memb. Sci. 2019, 576, 131–141. [Google Scholar] [CrossRef]
- Zeng, G.; Wei, K.; Zhang, H.; Zhang, J.; Lin, Q.; Cheng, X.; Sengupta, A.; Chiao, Y. Ultra-High Oil-Water Separation Membrane Based on Two-Dimensional MXene ( Ti3C2Tx) by Co-Incorporation of Halloysite Nanotubes and Polydopamine. Appl. Clay Sci. 2021, 211, 106177. [Google Scholar] [CrossRef]
- Jin, A.; Wang, Y.; Lin, K.; Jiang, L. Nanoparticles Modified by Polydopamine: Working as “Drug” Carriers. Bioact. Mater. 2020, 5, 522–541. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Liu, W.; Wang, R. Bio-Inspired Polydopamine Surface Modification of Nanodiamonds and Its Reduction of Silver Nanoparticles. J. Vis. Exp. 2018, 141, e58458. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.N.; Kaushik, N.; Lamichhane, P.; Mumtaz, S.; Paneru, R.; Bhartiya, P.; Kwon, J.S.; Mishra, Y.K.; Nguyen, L.Q.; Kaushik, N.K.; et al. In-Situ Plasma-Assisted Synthesis of Polydopamine-Functionalized Gold Nanoparticles for Biomedical Applications. Green Chem. 2020, 22, 6588–6599. [Google Scholar] [CrossRef]
- Liu, C.; Yao, W.; Tian, M.; Wei, J.; Song, Q.; Qiao, W. Mussel-Inspired Degradable Antibacterial Polydopamine/Silica Nanoparticle for Rapid Hemostasis. Biomaterials 2018, 179, 83–95. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Sun, H.; Song, X.; Fu, C.; Dong, P. Mussel-Inspired Polydopamine Coated Iron Oxide Nanoparticles for Biomedical Application. Nanomaterials 2015, 2015, 154592. [Google Scholar] [CrossRef]
- Bi, D.; Zhao, L.; Yu, R.; Li, H.; Guo, Y.; Wang, X. Surface Modification of Doxorubicin-Loaded Nanoparticles Based on Polydopamine with PH- Sensitive Property for Tumor Targeting Therapy. Drug Deliv. 2018, 25, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Chen, C.; Qin, P.; Wang, Y.; Wang, P. Silver Nanoparticle-Functionalized Polydopamine Nanotubes for Highly Sensitive Nanocomposite Electrode Sensors. J. Electroanal. Chem. 2020, 861, 113961. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Shi, X.; Yao, Z.; Qing, W.; Liu, F. Fast Polydopamine Coating on Reverse Osmosis Membrane: Process Investigation and Membrane Performance Study. J. Colloid Interface Sci. 2018, 535, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Z.; Wang, Y.; Xie, R.; Ju, X.; Wang, W. Facile Immobilization of Ag Nanoparticles on Microchannel Walls in Microreactors for Catalytic Applications. Chem. Eng. J. 2016, 309, 691–699. [Google Scholar] [CrossRef]
- Oncel, D. Green Synthesis of Highly Dispersed Ag Nanoparticles on Polydopamine-Functionalized Graphene Oxide and Their High Catalytic Reduction Reaction. Microporous Mesoporous Mater. 2020, 314, 110861. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, N.; Liu, X.; Liu, R. In Situ Green Synthesis of Au Nanoparticles onto Polydopamine-Functionalized Graphene for Catalytic Reduction of Nitrophenol. RSC Adv. 2014, 4, 64816–64824. [Google Scholar] [CrossRef]
- Boruah, P.K.; Darabdhara, G.; Das, M.R. Polydopamine Functionalized Graphene Sheets Decorated with Magnetic Metal Oxide Nanoparticles as Efficient Nanozyme for the Detection and Degradation of Harmful Triazine Pesticides. Chemosphere 2020, 268, 129328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, H.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S.B. Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 2019, 1, 115–155. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Zhang, X.; Zhu, D.; Yang, C.; Chammingkwan, P. Advantages of Polydopamine Coating in the Design of ZIF-8-Filled Thin-Film Nanocomposite ( TFN ) Membranes for Desalination. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 629, 127492. [Google Scholar] [CrossRef]
- Al, S.; Haroutounian, A.; Wright, C.J.; Hilal, N. Thin Film Nanocomposite (TFN) Membranes Modified with Polydopamine Coated Metals/Carbon-Nanostructures for Desalination Applications. Desalination 2017, 427, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Parkerson, Z.J.; Le, T.; Das, P.; Mahmoodi, S.N.; Esfahani, M.R. Cu-MOF-Polydopamine-Incorporated Functionalized Nano Fi Ltration Membranes for Water Treatment: Effect of Surficial Adhesive Modification Techniques. ACS ES&T Water 2020, 1, 430–439. [Google Scholar] [CrossRef]
- Tripathi, B.P.; Dubey, N.C.; Subair, R.; Choudhury, S.; Stamm, M. Enhanced Hydrophilic and Antifouling Polyacrylonitrile Membrane with Polydopamine Modified Silica Nanoparticles. RSC Adv. 2016, 6, 4448–4457. [Google Scholar] [CrossRef]
- Yang, H.C.; Luo, J.; Lv, Y.; Shen, P.; Xu, Z.K. Surface Engineering of Polymer Membranes via Mussel-Inspired Chemistry. J. Memb. Sci. 2015, 483, 42–59. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Mao, L.; Jiang, C.; Ang, J.; Lu, X. Doping Polysulfone Ultrafiltration Membrane with TiO2-PDA Nanohybrid for Simultaneous Self-Cleaning and Self-Protection. J. Memb. Sci. 2017, 532, 20–29. [Google Scholar] [CrossRef]
- Shao, B.; Liu, L.F.; Yang, F.L.; Shan, D.N.; Yuan, H. Membrane Modification Using Polydopamine and/or PDA Coated TiO2 Nano Particles for Wastewater Treatment. Procedia Eng. 2012, 44, 1431–1432. [Google Scholar] [CrossRef] [Green Version]
- Sianipar, M.; Kim, S.H.; Min, C.; Tijing, L.D.; Shon, H.K. Potential and Performance of a Polydopamine-Coated Multiwalled Carbon Nanotube/Polysulfone Nanocomposite Membrane for Ultrafiltration Application. J. Ind. Eng. Chem. 2015, 34, 364–373. [Google Scholar] [CrossRef]
- Kallem, P.; Othman, I.; Ouda, M.; Hasan, S.W.; AlNashef, I.; Banat, F. Polyethersulfone Hybrid Ultrafiltration Membranes Fabricated with Polydopamine Modified ZnFe2O4 Nanocomposites: Applications in Humic Acid Removal and Oil/Water Emulsion Separation. Process Saf. Environ. Prot. 2021, 148, 813–824. [Google Scholar] [CrossRef]
- De Guzman, M.R.; Andra, C.K.A.; Ang, M.B.M.Y.; Dizon, G.V.C.; Caparanga, A.R.; Huang, S.H.; Lee, K.R. Increased Performance and Antifouling of Mixed-Matrix Membranes of Cellulose Acetate with Hydrophilic Nanoparticles of Polydopamine-Sulfobetaine Methacrylate for Oil-Water Separation. J. Memb. Sci. 2020, 620, 118881. [Google Scholar] [CrossRef]
- Haresco, C.K.S.; Ang, M.B.M.Y.; Doma, B.T.; Huang, S.H.; Lee, K.R. Performance Enhancement of Thin-Film Nanocomposite Nanofiltration Membranes via Embedment of Novel Polydopamine-Sulfobetaine Methacrylate Nanoparticles. Sep. Purif. Technol. 2021, 274, 119022. [Google Scholar] [CrossRef]
- Zhao, B.; Long, X.; Wang, H.; Wang, L.; Qian, Y.; Zhang, H.; Yang, C.; Zhang, Z.; Li, J.; Ma, C.; et al. Polyamide Thin Film Nanocomposite Membrane Containing Polydopamine Modified ZIF-8 for Nanofiltration. Colloids Surf. A Physicochem. Eng. Asp. 2020, 612, 125971. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Trilles, C.A.; De Guzman, M.R.; Pereira, J.M.; Aquino, R.R.; Huang, S.H.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Improved Performance of Thin-Film Nanocomposite Nanofiltration Membranes as Induced by Embedded Polydopamine-Coated Silica Nanoparticles. Sep. Purif. Technol. 2019, 224, 113–120. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Lv, P.; Sun, J.; Zhao, P.; Yang, L. Modifying Thinfilm Composite Membrane with Zeolitic Imidazolate Framework-8 @ Polydopamine for Enhanced Antifouling Property. Chemosphere 2020, 248, 125956. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward Osmosis Processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef] [Green Version]
- Arena, J.T.; Manickam, S.S.; Reimund, K.K.; Freeman, B.D.; McCutcheon, J.R. Solute and Water Transport in Forward Osmosis Using Polydopamine Modified Thin Film Composite Membranes. Desalination 2014, 343, 8–16. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Li, X.; Widjojo, N.; Chung, T.S. Thin Film Composite Forward Osmosis Membranes Based on Polydopamine Modified Polysulfone Substrates with Enhancements in Both Water Flux and Salt Rejection. Chem. Eng. Sci. 2012, 80, 219–231. [Google Scholar] [CrossRef]
- Shabani, Z.; Kahrizi, M.; Mohammadi, T.; Kasiri, N.; Sahebi, S. A Novel Thin Film Composite Forward Osmosis Membrane Using Bio-Inspired Polydopamine Coated Polyvinyl Chloride Substrate: Experimental and Computational Fluid Dynamics Modelling. Process Saf. Environ. Prot. 2021, 147, 756–771. [Google Scholar] [CrossRef]
- Kwon, S.J.; Park, S.H.; Shin, M.G.; Park, M.S.; Park, K.; Hong, S.; Park, H.; Park, Y.I.; Lee, J.H. Fabrication of High Performance and Durable Forward Osmosis Membranes Using Mussel-Inspired Polydopamine-Modified Polyethylene Supports. J. Memb. Sci. 2019, 584, 89–99. [Google Scholar] [CrossRef]
- Song, H.M.; Zhu, L.J.; Zeng, Z.X.; Xue, Q.J. High Performance Forward Osmosis Cellulose Acetate (CA) Membrane Modified by Polyvinyl Alcohol and Polydopamine. J. Polym. Res. 2018, 25, 159. [Google Scholar] [CrossRef]
- Zhang, L.; Gonzales, R.R.; Istirokhatun, T.; Lin, Y.; Segawa, J.; Shon, H.K.; Matsuyama, H. In Situ Engineering of an Ultrathin Polyamphoteric Layer on Polyketone-Based Thin Film Composite Forward Osmosis Membrane for Comprehensive Anti-Fouling Performance. Sep. Purif. Technol. 2021, 272, 118922. [Google Scholar] [CrossRef]
- Xu, L.; Xu, J.; Shan, B.; Wang, X.; Gao, C. Novel Thin-Film Composite Membranes: Via Manipulating the Synergistic Interaction of Dopamine and m -Phenylenediamine for Highly Efficient Forward Osmosis Desalination. J. Mater. Chem. A 2017, 5, 7920–7932. [Google Scholar] [CrossRef]
- Lu, P.; Liang, S.; Zhou, T.; Xue, T.; Mei, X.; Wang, Q. Layered Double Hydroxide Nanoparticle Modified Forward Osmosis Membranes via Polydopamine Immobilization with Significantly Enhanced Chlorine and Fouling Resistance. Desalination 2017, 421, 99–109. [Google Scholar] [CrossRef]
- Guo, H.; Yao, Z.; Wang, J.; Yang, Z.; Ma, X.; Tang, C.Y. Polydopamine Coating on a Thin Film Composite Forward Osmosis Membrane for Enhanced Mass Transport and Antifouling Performance. J. Memb. Sci. 2018, 551, 234–242. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Zhao, S.; Ng, D.; Zhang, J.; Xie, Z. Dopamine Incorporating Forward Osmosis Membranes with Enhanced Selectivity and Antifouling Properties. RSC Adv. 2018, 8, 22469–22481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Fang, Z.; Xie, C.; Zhao, S.; Ng, D.; Xie, Z. Dopamine Incorporated Forward Osmosis Membranes with High Structural Stability and Chlorine Resistance. Processes 2018, 6, 151. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Q.; An, X.; Li, Z.; Hu, Y. Towards Enhanced Antifouling and Flux Performances of Thin-Film Composite Forward Osmosis Membrane via Constructing a Sandwich-like Carbon Nanotubes-Coated Support. Desalination 2020, 479, 114311. [Google Scholar] [CrossRef]
- Qiu, M.; He, C. Efficient Removal of Heavy Metal Ions by Forward Osmosis Membrane with a Polydopamine Modified Zeolitic Imidazolate Framework Incorporated Selective Layer. J. Hazard. Mater. 2018, 367, 339–347. [Google Scholar] [CrossRef]
- Alkhouzaam, A. Bio-Inspired Fabrication of Ultrafiltration Membranes Incorporating Polydopamine Functionalized Graphene Oxide Nanoparticles. Ph.D. Thesis, Qatar University, Doha, Qatar, 2021. [Google Scholar]
- Sali, S.; Mackey, H.R.; Abdala, A.A. Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes. Nanomaterials 2019, 9, 769. [Google Scholar] [CrossRef] [Green Version]
- Alkhouzaam, A.; Qiblawey, H. Synergetic Effects of Dodecylamine-Functionalized Graphene Oxide Nanoparticles on Antifouling and Antibacterial Properties of Polysulfone Ultrafiltration Membranes. J. Water Process Eng. 2021, 42, 102120. [Google Scholar] [CrossRef]
- Obata, S.; Saiki, K.; Taniguchi, T.; Ihara, T.; Kitamura, Y.; Matsumoto, Y. Graphene Oxide: A Fertile Nanosheet for Various Applications. J. Phys. Soc. Jpn. 2015, 84, 121012. [Google Scholar] [CrossRef]
- Kusworo, T.; Nugraheni, R.E.; Aryanti, N. The Effect of Membrane Modification Using TiO2, ZnO, and GO Nanoparticles: Challenges and Future Direction in Wastewater Treatment. In Proceedings of the IOP Conference Series: Materials Science and Engineering, International Conference on Chemical and Material Engineering (ICCME 2020), Semarang, Indonesia, 6–7 October 2020; Volume 1053, p. 012135. [Google Scholar]
- Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M.S.; Aziz, F. Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of in Vitro and in Vivo Studies. Biomed Res. Int. 2021, 2021, 5518999. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M. Polydopamine Functionalized Graphene Oxide as Membrane Nanofiller: Spectral and Structural Studies. Membranes 2021, 11, 86. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Novel Polysulfone Ultrafiltration Membranes Incorporating Polydopamine Functionalized Graphene Oxide with Enhanced Flux and Fouling Resistance. J. Memb. Sci. 2020, 620, 118900. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, J.; Yin, Y.; Wu, H. Structurally Stable Graphene Oxide-Based Nanofiltration Membranes with Bioadhesive Polydopamine Coating. Appl. Surf. Sci. 2017, 427, 1092–1098. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, W.; Liu, Y.; Qin, C.; Meng, M.; Jiang, Y.; Qiu, J.; Peng, J. A Mussel Inspired Highly Stable Graphene Oxide Membrane for Efficient Oil-in-Water Emulsions Separation. Sep. Purif. Technol. 2018, 199, 37–46. [Google Scholar] [CrossRef]
- Xu, K.; Feng, B.; Zhou, C.; Huang, A. Synthesis of Highly Stable Graphene Oxide Membranes on Polydopamine Functionalized Supports for Seawater Desalination. Chem. Eng. Sci. 2016, 146, 159–165. [Google Scholar] [CrossRef]
- Zhan, Y.; He, S.; Wan, X.; Zhao, S.; Bai, Y. Thermally and Chemically Stable Poly(Arylene Ether Nitrile)/Halloysite Nanotubes Intercalated Graphene Oxide Nanofibrous Composite Membranes for Highly Efficient Oil/Water Emulsion Separation in Harsh Environment. J. Memb. Sci. 2018, 567, 76–88. [Google Scholar] [CrossRef]
- Zhan, Y.; Wan, X.; He, S.; Yang, Q.; He, Y. Design of Durable and Efficient Poly(Arylene Ether Nitrile)/Bioinspired Polydopamine Coated Graphene Oxide Nanofibrous Composite Membrane for Anionic Dyes Separation. Chem. Eng. J. 2017, 333, 132–145. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, Z.; Li, F.; Chen, Q.; Yin, D.; Min, X. A Novel Reduced Graphene Oxide-Based Composite Membrane Prepared via a Facile Deposition Method for Multifunctional Applications: Oil/Water Separation and Cationic Dyes Removal. Sep. Purif. Technol. 2018, 200, 130–140. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, L.; Xiang, J.; Cui, L.; Jiao, J.; Sai, H.; Li, Z.; Li, F. Formation of Uniform Reduced Graphene Oxide Films on Modified PET Substrates Using Drop-Casting Method. Particuology 2014, 17, 66–73. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Zhao, G.; Lu, Y.; Li, C.; Meng, H. A Novel Graphene Oxide Composite Nanofiltration Membrane with Excellent Performance and Antifouling Ability. J. Membr. Sci. Technol. 2018, 08, 184. [Google Scholar] [CrossRef]
- Chen, X.; Deng, E.; Park, D.; Pfeifer, B.A.; Dai, N.; Lin, H. Grafting Activated Graphene Oxide Nanosheets onto Ultrafiltration Membranes Using Polydopamine to Enhance Antifouling Properties. ACS Appl. Mater. Interfaces 2020, 12, 48179–48187. [Google Scholar] [CrossRef]
- Wang, C.; Park, M.J.; Seo, D.H.; Shon, H.K. Inkjet Printing of Graphene Oxide and Dopamine on Nanofiltration Membranes for Improved Anti-Fouling Properties and Chlorine Resistance. Sep. Purif. Technol. 2020, 254, 117604. [Google Scholar] [CrossRef]
- Yang, E.; Alayande, A.B.; Kim, C.M.; Song, J.H.; Kim, I.S. Laminar Reduced Graphene Oxide Membrane Modified with Silver Nanoparticle-Polydopamine for Water/Ion Separation and Biofouling Resistance Enhancement. Desalination 2017, 426, 21–31. [Google Scholar] [CrossRef]
- Yang, E.; Kim, C.M.; Song, J.H.; Ki, H.; Ham, M.H.; Kim, I.S. Enhanced Desalination Performance of Forward Osmosis Membranes Based on Reduced Graphene Oxide Laminates Coated with Hydrophilic Polydopamine. Carbon N. Y. 2017, 117, 293–300. [Google Scholar] [CrossRef]
- Lin, C.F.; Chung, L.H.; Lin, G.Y.; Chang, M.C.; Lee, C.Y.; Tai, N.H. Enhancing the Efficiency of a Forward Osmosis Membrane with a Polydopamine/Graphene Oxide Layer Prepared Via the Modified Molecular Layer-by-Layer Method. ACS Omega 2020, 5, 18738–18745. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Shah, A.A.; Nam, S.E.; Park, Y.I.; Park, H. Thin-Film Composite Membranes Comprising Ultrathin Hydrophilic Polydopamine Interlayer with Graphene Oxide for Forward Osmosis. Desalination 2018, 449, 41–49. [Google Scholar] [CrossRef]
- Hegab, H.M.; ElMekawy, A.; Barclay, T.G.; Michelmore, A.; Zou, L.; Saint, C.P.; Ginic-Markovic, M. Effective In-Situ Chemical Surface Modification of Forward Osmosis Membranes with Polydopamine-Induced Graphene Oxide for Biofouling Mitigation. Desalination 2016, 385, 126–137. [Google Scholar] [CrossRef]
- Ndlwana, L.; Motsa, M.M. A New Method for a Polyethersulfone-Based Membrane in Low/Ultra-Low Pressure Reverse Osmosis ( L/ULPRO ) Desalination. Membranes 2020, 10, 439. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, J.; Qiu, Y.; Pan, K. Polydopamine-Grafted Graphene Oxide Composite Membranes with Adjustable Nanochannels and Separation Performance. Adv. Mater. Interfaces 2018, 5, 1701386. [Google Scholar] [CrossRef]
- Wang, J.; Huang, T.; Zhang, L.; Yu, Q.J.; Hou, L. Dopamine Crosslinked Graphene Oxide Membrane for Simultaneous Removal of Organic Pollutants and Trace Heavy Metals from Aqueous Solution. Environ. Technol. 2017, 39, 3055–3065. [Google Scholar] [CrossRef]
- Wang, C.; Feng, Y.; Chen, J.; Bai, X.; Ren, L.; Wang, C.; Huang, K.; Wu, H. Nanofiltration Membrane Based on Graphene Oxide Crosslinked with Zwitterion-Functionalized Polydopamine for Improved Performances. J. Taiwan Inst. Chem. Eng. 2020, 110, 153–162. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, D.; Chen, M.; Ma, L.; Yang, B.; Li, L.; Zhu, M.; Tu, W. Bioinspired Dopamine Modulating Graphene Oxide Nanocomposite Membrane Interposed by Super-Hydrophilic UiO-66 with Enhanced Water Permeability. Sep. Purif. Technol. 2020, 253, 117552. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; An, J.; Fu, H.; Wu, X.; Pang, C.; Gao, H. Construction of an Antibacterial Membrane Based on Dopamine and Polyethylenimine Cross-Linked Graphene Oxide. ACS Biomater. Sci. Eng. 2019, 5, 2732–2739. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, M.; Chen, M.; Ma, L.; Yang, B.; Li, L.; Tu, W. A Polydopamine-Modified Reduced Graphene Oxide (RGO)/MOFs Nanocomposite with Fast Rejection Capacity for Organic Dye. Chem. Eng. J. 2018, 359, 47–57. [Google Scholar] [CrossRef]
- Zeng, G.; Lin, Q.; Wei, K.; Liu, Y.; Zheng, S.; Zhan, Y.; He, S.; Patra, T.; Chiao, Y.H. High-Performing Composite Membrane Based on Dopamine-Functionalized Graphene Oxide Incorporated Two-Dimensional MXene Nanosheets for Water Purification. J. Mater. Sci. 2021, 56, 6814–6829. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, W.; Chen, M.; Ma, L.; Yang, B.; Liang, Q.; Chen, Y. A Mussel-Induced Method to Fabricate Reduced Graphene Oxide/Halloysite Nanotubes Membranes for Multifunctional Applications in Water Purification and Oil/Water Separation. Chem. Eng. J. 2017, 336, 263–277. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, M.; Zhang, W.; Cao, Y.; Chen, Y.; Lin, X.; Xu, L.; Li, C.; Feng, L.; Wei, Y. Ultralight Free-Standing Reduced Graphene Oxide Membranes for Oil-in-Water Emulsion Separation. J. Mater. Chem. A 2015, 3, 20113–20117. [Google Scholar] [CrossRef]
- Cheng, Y.; Barras, A.; Lu, S.; Xu, W.; Szunerits, S.; Boukherroub, R. Fabrication of Superhydrophobic/Superoleophilic Functionalized Reduced Graphene Oxide/Polydopamine/PFDT Membrane for Efficient Oil/Water Separation. Sep. Purif. Technol. 2019, 236, 116240. [Google Scholar] [CrossRef]
- Wang, X.; Peng, X.; Zhao, Y.; Yang, C.; Qi, K.; Li, Y.; Li, P. Bio-Inspired Modification of Superhydrophilic IPP Membrane Based on Polydopamine and Graphene Oxide for Highly Antifouling Performance and Reusability. Mater. Lett. 2019, 255, 126573. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Rehman, S.; Leu, S.Y.; An, A.K. Evaluation of Anti-Bacterial Adhesion Performance of Polydopamine Cross-Linked Graphene Oxide RO Membrane via in Situ Optical Coherence Tomography. Desalination 2020, 479, 114339. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Z.; Long, R.; Sun, Y.; Wang, M.; Li, X.; Zeng, G. Polydopamine Intimate Contacted Two-Dimensional/Two-Dimensional Ultrathin Nylon Basement Membrane Supported RGO/PDA/MXene Composite Material for Oil-Water Separation and Dye Removal. Sep. Purif. Technol. 2020, 247, 116945. [Google Scholar] [CrossRef]
- Batul, R.; Bhave, M.; Khaliq, A. Synthesis of Polydopamine Nanoparticles for Drug Delivery Applications. Microsc. Microanal. 2018, 24, 1758–1759. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Floren, M.; Tan, W. Mussel-Inspired Polydopamine for Bio-Surface Functionalization. Biosurface and Biotribology 2016, 2, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Dhawan, G.; Gupta, S.; Kumar, P.; Klodzinska, S.N. Recent Advances in a Polydopamine-Mediated Antimicrobial Adhesion System. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yang, W.; Shi, D.; Wu, M.; Xiong, X.; Chen, Z. Bioinspired and Osteopromotive Polydopamine Nanoparticle-Incorporated Fi Brous Membranes for Robust Bone Regeneration. NPG Asia Mater. 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile Polydopamine Platforms: Synthesis. ACS Nano 2019, 13, 8537–8565. [Google Scholar] [CrossRef] [PubMed]
- Andoy, N.M.O.; Jeon, K.; Kreis, C.T.; Sullan, R.M.A. Multifunctional and Stimuli-Responsive Polydopamine Nanoparticle-Based Platform for Targeted Antimicrobial Applications. Adv. Funct. Mater. 2020, 30, 2004503. [Google Scholar] [CrossRef]
- Kallem, P.; Ibrahim, Y.; Hasan, S.W.; Loke, P.; Banat, F. Fabrication of Novel Polyethersulfone (PES) Hybrid Ultrafiltration Membranes with Superior Permeability and Antifouling Properties Using Environmentally Friendly Sulfonated Functionalized Polydopamine Nanofillers. Sep. Purif. Technol. 2021, 261, 118311. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Zhang, H.; Zhu, B.; Xu, Y. Improved Hydrodynamic Permeability and Antifouling Properties of Poly (Vinylidene Fl Uoride) Membranes Using Polydopamine Nanoparticles as Additives. J. Memb. Sci. 2014, 457, 73–81. [Google Scholar] [CrossRef]
- Luo, F.; Wang, J.; Yao, Z.; Zhang, L.; Chen, H. Polydopamine Nanoparticles Modified Nanofiber Supported Thin Film Composite Membrane with Enhanced Adhesion Strength for Forward Osmosis. J. Memb. Sci. 2020, 618, 118673. [Google Scholar] [CrossRef]
- Borsalani, A.; Mostafa, S.; Ghomsheh, T.; Azimi, A.; Mirzaei, M. Improved Performance of Nanocomposite Forward Osmosis Membrane with Polydopamine Nanoparticles / Polyphenylsulfone ( PDA Nps / PPSU ) Substrate and UV Irradiation Treated Polycarbonate Active Layer. Desalin. Water Treat. 2021, 211, 69–79. [Google Scholar] [CrossRef]
- Belle, M.Y.M.; Ji, Y.; Huang, S.; Lee, K.; Lai, J. A Facile and Versatile Strategy for Fabricating Thin- Fi Lm Nanocomposite Membranes with Polydopamine-Piperazine Nanoparticles Generated in Situ. J. Memb. Sci. 2019, 579, 79–89. [Google Scholar] [CrossRef]
- Maganto, H.L.C.; Belle, M.; Yap, M.; Dizon, G.V.C.; Caparanga, A.R.; Aquino, R.R.; Huang, S.; Tsai, H.; Lee, K. Infusion of Silver—Polydopamine Particles into Polyethersulfone Matrix to Improve the Membrane ’ s Dye Desalination Performance and Antibacterial Property. Membranes 2021, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhu, Y.; Jiang, F.; Fu, Y.; Zhang, W.; Zhang, Y.; Zhang, G. Multifunctional Polydopamine Particles as a Thermal Stability Modifier to Prepare Antifouling Melt Blend Composite Membranes. ACS Omega 2021, 6, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
Membrane Type | Tested on | Filler | NPs Concentration | Methods | Solute/Application | Parameters Achieved | References |
---|---|---|---|---|---|---|---|
Poly (ether imide) (PEI)-UF | Dead end filtration setup | PEI/PDA/Ag NPs | 0.005 M and 0.01 M AgNO3 solution | Two-step modifications | BSA, HA, and Oil | Jw = (97.2 LMH) Hydraulic resistance (13.8 kPa/LMH) Rejection (>97%) Flux recovery ratio FRR (>95%) | [13] |
Polyethersulfone (PES)-UF | Cross-flow filtration setup. | PES/PDA/TiO2 NPs | 0.1 and 0.5 (w/v%) of TiO2 | Two-step modifications | BSA | FRR = 32% BSA rejection = 84% 50% flux reduction | [20] |
Polyethersulfone (PES) membrane surface | Protein adsorption and bacteria experiments. | PDA-(PEI-SBMA)-AgNPs Polyethyleneimine-graft-sulfobetaine methacrylate | 0.1 M of AgNO3 solution | Co-deposition and two-step modifications. | Protein and bacteria | High antibacterial properties. | [22] |
PPMM polypropylene- MF | Dead-end filtration equipment | PDA-PEI- TiO2 | 2.5 × 10−5 M of Ti-BALDH and 0.025 M of NH3. H2O | Co-deposition and two-step modifications. | BSA and Lys | FRR = 82% for BSA solution. FRR = 86% for Lys solution. Relative flux reduction (RFR) = 31 for BSA solution RFR = 26% for Lys solution. | [23] |
Commercial Polyacrylonitrile PAN-UF sheet membrane-150 kDa | Cross-flow filtration setup. | PDA-PEI-CuSO4/H2O2 | 8.3 mM CuSO4 and 32.6 mM H2O2 | Rapid Co-deposition | Salts (Na2SO4, MgCl2) Dyes | Water permeability (26.2 LMH/bar) Dyes rejection > 90% | [24] |
PA-TFC-NF NFX-TFC membranes (NF) | Dead-end cell (High Pressure Stirred Cell Kit). | PDA–TiO2 PDA–ZnO PDA–TiO2:ZnO | 0.01, 0.02, 0.03, 0.05, 0.005, 0.007 and 0.015 wt% of TiO2 and ZnO | Two-step deposition and co-deposition. | Salts: NaCl and MgSO4Bacillus Subtilis as model bacteria | Water permeability = 6.8, 7.7 and 7.8 LMH/bar for TiO2 co-deposition. Water permeability = 6.8, 6.2 and 5.9 LMH/bar for TiO2 two-step coating. MgSO4 rejection ~95% | [14] |
Commercial Polyacrylonitrile PAN-UF sheet membrane −75 kDa | Cross-flow filtration setup. | PDA-CuNPs | 25 mL and 40 mL of CuNPs solution | Two-step deposition and co-deposition. | Dyes. Bacteria Salts. | Textile dyes rejection >99% Water permeability = 18.6 LMH/bar for two-step coating. Water permeability = 25.5 LMH/bar for co-deposition of PDA and CuNPs | [26]. |
Commercial Polyacrylonitrile PAN-UF membrane- ranging from 10 to 30 kDa | Cross-flow filtration setup. | PDA-PEI-SiO2 NPs | 0–2 mg/mL of SiO2 NPs | Co-deposition | Various salts: NaCl, CaCl2, MgCl2, MgSO4, Na2SO4 | Jw = 32 LMH Bivalent cations whereas rejection = 90% Monovalent cations < 30% | [27] |
Commercial Polyacrylonitrile PAN-UF-50 kDa | Cross-flow filtration setup. | PDA-PEI-GNPs (electropositive gold NPs) | Same designed concentration of GNPs. | Co-deposition | Metal salts (ZnCl2, BaCl2, NiCl2, and CdCl2) Salts (MgCl2) and NaCl | Jw = 240 LMH MgCl2 rejection > 90% Na2SO4 rejection < 30% 50% reduction of bacteria | [28] |
Commercial Polyacrylonitrile PAN-UF membrane- 100 kDa | Dead-end stirred cell filtration apparatus | POSS (NPs)-PDA | 12 mg of POSS solution | Co-deposition | Dye solution and salt solution | Water permeability 1099 LMH/MPa. Dye rejection (>90%) Salt permeation (>90%) | [32] |
Hydrolyzed Polyacrylonitrile (HPAN-UF) membrane | Home-made cross-flow filtration cell. | g-C3N4 nanosheets -PDA/polyethylenimine (PEI) | 0–0.005–0.01–0.02–0.04% of C3N4 nanosheets suspensions. | Co-deposition | Dye and salt | Water permeability = 28.4 LMH/bar. Dyes rejection >99.3%. Low salt rejection: 2.9% rejection of NaCl and 7.6% for Na2SO4 | [31] |
SiO2/PVA electrospun nanofiber membrane | Suction filter device | Reduced Pd NPs decorated Polydopamine | 150 mg of PdCl2 | Co-deposition | Organic compounds oils and dyes (kerosene, hexane, petroleum ether, chloroform and toluene) | Jw = 8000 LMH Removal effeciency of oils and organic chemistry 99.9%. Degradation effeciency of Dyes: 99%. | [29] |
polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane | Dead-end flow stirred cell | Halloysite nanotubes (HNTs)-3-aminopropyltriethoxysilane (ABTES)-PDA | 120 mg of HNTs | Co-deposition | BSA | Jw = 291.9 LMH Rejection of BSA = 92% | [30] |
Commercial PAN-100,000 Da | Dead end filtration setup | PA/PDA-COF (covalent organic framework nanosheets)/PAN | 0–0.35 g/L | Co-deposition | Salt and dye | Water permeability = 207.07 LMH/MPa Salt rejection > 90% Dyes rection 92.8–99.9% | [33] |
Cellulose acetate (CA) membrane | Vacuum filtration | Hal@MXene NPs -PDA | 2 mg Mxene | Co-deposition via vacuum filtration | Oil-water emulsion | Water permeability = 5036.2 LMH/bar Rejection of oil > 99.8% | [34] |
Membrane Type | Tested On | Filler | NPs Concentration | Methods of PDA-f-NPs Deposition | Solute/Application | Parameters Achieved | References |
---|---|---|---|---|---|---|---|
Commercial PES membranes-UF | Dead-end Filtration cell | PDA-f-TiO2 | 0.05 wt% of TiO2 | One-step dip coating | BSA | Jw = 962 LMH FRR = 97% Fouling reversibility = 98.62% | [16] |
Laboratory made PES/UF membranes via casting | Crossflow filtration cell | MWCNTs coated by metal/metal oxide (Ag, Al2O3, Fe2O3 and TiO2) then coated with a PDA layer to produce HNS. | 50 mg of each HNS were added to DA solution. | Vacuum filtration deposition method for depositing PDA-coated HNS onto membrane substrate. TFN membranes were fabricated via interfacial polymerization | Salts (NaCl, Na2SO4 and MgSO4) | Jw = 10.5 LMH Salt rejection = 97.15–99.44% | [49] |
Nanofiltration membranes with a polyamide selective layer and a poly (ether sulfone) (PES) support layer | Crossflow Filtration cell | Cu-MOF NPs-PDA | 1 wt% of Cu-MOF NPs were added to DA solution. | (Dip-coating) and dynamic (filtration-assisted) | Dyes (Methylene blue and methyl orange) | Dyes rejection = 98%. 43 and 37 LMH | [50] |
PSf-based hybrid membranes | Crossflow Filtration cell | TiO2-PDA nanohybrid | Prepared TiO2-PAD particles | Phase inversion method | BSA | Jw = 428 LMH FRR = 72% | [53] |
PVDF-UF | - | PDA-TiO2 | 1 wt% of PDA-coated TiO2 | Phase inversion method | - | Flyx increased by 35.7%. | [54] |
PSf-UF | Crossflow Filtration and Dead-end Filtration. | MWCNTs-PDA | 0.1–0.5 wt.% MWCNTs-PDA | Phase inversion method | Organic solutions BSA solution | Jw = 81.27 LMH R% of BSA = 99.88% | [55] |
PES | Dead-end Filtration cell. | PDA@ZnFe2O4 NPs | 2 wt% and 4 wt% of PDA@ZnFe2O4 NPs | NIPS method (casting) | Humic acid Oil-water separation | Jw = 687 LMH R% of HA = 94% R% of oil = 96% FRR for HA = 94% FRR = for oil = 82.5% | [56] |
PAN-UF | Dead end Filtration cell. | polydopamine modified silica nanoparticles (SiO2-DOPA) | 5–10–15% of (SiO2-DOPA) | Phase inversion process. | rejection of BSA protein and dye molecules | FRR = 75% | [51] |
Cellulose acetate (CA) | Crossflow filtration setup | P(DA-SBMA) nanoparticles | 0.05–0.1–0.2 and 0.3 wt% | Wet-phase inversion | oil-in-water emulsions | Jw = 583.64 LMH FRR = 8.85% Reversible fouling = 11.10% | [57] |
PSF membrane fabricated by Nonsolvent induced phase separation (NIPS) method | Home-made Crossflow filtration apparatus | PDA-zeolitic imidazolate framework-8 (ZIF-8) NPs | 0.01 wt% of PDA-(ZIF-8) NPs | Incorporated into PA layer within aqueous phase during interfacial polymerization | Salts: (NaCl) (Na2SO4) rhodamine B | Jw = 4.81 LMH R% of SO42- | [59] |
PSf fabricated via casting | Crossflow Filtration cell. | PSf-PIP/PDA-SiNPs-TMC | PDA-SiNPs/TMC in g/g: 0.05–0.15–0.35–0.55–0.75 and 0.95 | PDA-SiNPs into TMC solution (interfacial polymerization) | Bovine serum albumin (BSA) NaHSO3, HCl, NaOH, Na2SO4, MgSO4, MgCl2, and NaCl. Concentrated ammonia water | Jw = 80 LMH R% of Na2SO4 = 97%; R% of MgSO4 = 94%; R% of MgCl2 = 68%; R% of NaCl = 35%. | [60] |
Polysulfone (PSf) support membranes via casting | Crossflow Filtration cell. | Poly (dopamine-sulfobetaine methacrylate) [P(DA-SBMA)] nanoparticles | P(DA-SBMA)/TMC in g/g: 0.05–0.15–0.35–0.55–0.75 and 0.95 | P(DA-SBMA) NPs were dispersed in the TMC phase during interfacial polymerization (IP) | salt rejections Na2SO4, MgSO4, MgCl2, and NaCl. Bovine serum albumin (BSA) | Jw = 73.11 LMH R% of Na2SO = 98% R% of MgSO4 = 95%, R% of MgCl2 = 54% R% of NaCl = 42% | [58] |
Commercial polysulfone (PSf) ultrafiltration membrane (20 kDa) | Self-made Cross flow equipment | ZIF-8@PDA | 0.01–0.02–0.03–0.04 wt% of ZIF-8@PDA NPs | ZIF-8@PDA nanoparticles were dispersed in the TMC phase during interfacial polymerization (IP) | NaCl solution, BSA and lysozyme LZM solutions | Water permeability = 3.74 LMH/bar 43.8% higher than control membrane. R% of chlorine = 98.68% | [61] |
Commercial polyether sulfone (PES) membrane | Dead-end Filtration cell | PDA-coated ZIF-8 NPs | 5–10–20–40 wt % of PDA-coated ZIF-8 NPs based on the weight of PA selective layer. | PDA-f-ZIF-8 NPs dispersed in the aqueous solution of MPD | NaCl, Na2SO4, HA | Water permeability = 11.4 LMH R% of NaCl = 45.4 % R% of Na2SO4 = 95.1% FRR% = 94.4% | [48] |
Membrane Type | Filler | Method | Solute/Application | Parameters Achieved | References |
---|---|---|---|---|---|
Commercial BW30 and SW30-XLE Reverse osmosis membranes made of PSu supported by a PET nonwoven | Isopropanol (IPA) -PDA | Coating | NaCl | Four-to-six-fold increase in FO water flux. Chloride ion rejection = 80–90% | [63] |
PSF membrane via wet phase inversion method | PDA/(MPD-TMC) | Coating PDA as Intermediate layer | NaCl | Jw = 24 LMH RSF 1.75 gMH | [64] |
Polyketone (PK)-based TFC membrane-FO via induced phase separation (NIPS) method | Poly(2-methacryloyloxyethyl phosphorylcholine-co-2-amino-ethyl methacrylate hydrochloride) (MPC-co-AEMA)-PDA | Modified by Co-deposition (single-step simultaneous deposition) over rejection layer. | Oil and bovine serum albumin (BSA). | R% = 95.2% Jw = 23.7 (LMH) Js = 4.9 (g MH) | [68] |
CA membrane via non-solvent induced phase separation. | CA- PVA-PDA | PVA and PDA by Surface coating technology | NaCl | Jw = 16.72 LMH Js = 0.14 mMH Salt R% = 96.4% | [67] |
Mixed cellulose ester (MCE) substrate | TMC/MPD-DA/MCE TMC/DA/TMC | Incorporated into PA layer- within MPD aqueous phase during interfacial polymerization | NaCl | Jw: (50 LMH, Js: 8.19 gMH NaCl rejection > 92 % at 2 bar. | [69] |
PSF via phase inversion method | PDA-LDHs (Layered double hydroxides) | Coating TFC membrane by PDA as Intermediate layer Then immersed in the LDHs suspension for 1 h | Sodium alginate NaCl CaCl2 | FO mode Jw = 9.93 LMH and 9.99 LMH Js = 4.9 gMH and 4.8 gMH | [70] |
PVC support membranes via Phase inversion | TFC- PDA coated over PVC membrane | Coating (1–3 h) PDA onto PVC surface as intermediate layer | NaCl | Jw = 18.9 LMH (FO mode) and 47.5 LMH (PRO mode) Js =3.35 gMH (FO mode) | [65] |
polyethylene (PE) support, | PDA over PE-TFC | Simple dip coating (8 h) in PDA as intermediate layer | NaCl | FO-Mode Jw = 53.0 LMH Js = 14.82 gMH | [66] |
TFC (consists of a polyamide rejection layer and a porous supporting layer embedded on a polyester mesh | TFC-PDA | Surface Coating only the rejection layer PA exposed to the coating solution | NaCl | Jw = 9 LMH at FO mode Reverse solute diffusion = 0.90 g/L at FO mode Jw = 16.5 LMH at PRO mode reverse solute diffusion = 0.82 g/L at PRO mode | [71] |
PSF via casting | TMC/DA-MPD/PSF | Interfacial polymerization | NaCl Humic acid | Jw: (15.09 LMH) at FO mode. Js: (32.77 mmol m−2 h−1) at FO mode | [72] |
Porous polysulfone membrane substrate PSf-PVP via casting | DA/TMC TFC | The PSf substrate was first immersed in DA solution then dipped into TMC solution. IP reaction occurred between DA and TMC | MgCl2 solution Chlorine resistance (NaClO solution) | Jw = 6.55 LMH, Js =1.1 g/L. | [73] |
Double-layer polyacrylonitrile (PAN) casted | polydopamine/metal organic framework | Rapid co-deposition of polydopamine (PDA) and MPD. MOF-801 (0.005–0.01–0.02 wt%) dispersed in a 0.1 wt% TMC/n-hexane solution then poured over PDA/MPD membrane via IP. | Salt Heavy metal ion rejection (Cd2+, Ni2+, Pb2+) | Salt rejection 87.94%, 93.5%, and 85.7% (94~99.2% for Ni2+, Cd2+, and Pb2+ removal rate) | [15] |
Commercial polyethersulfone (PES)-microfiltration (MF) membrane | PDA-single-walled carbon nanotubes (SWCNTs) | Vacuum filtration + spraying Amount of PAD-SWCNTs dispersion 0–3–9–15–21 mL. | NaCl, Bovine serum albumin (BSA) | Jw of 35.7 LMH at PRO mode Js of 1.42 gMH at PRO mode BSA R% = 98% | [74] |
Commercial Polyethersulfone ultrafiltration membrane | (ZIF-8@PDA) in the poly (ethyleneimine)/1,3,5-benzenetricarboxylic acid chloride (PEI/TMC) crosslinked matrix | Deposition of (0–0.025–0.05 and 0.1 wt% of ZIF-8@PDA) in the poly (ethyleneimine) onto membrane substrate. Followed by 1,3,5-benzenetricarboxylic acid chloride (PEI/TMC) crosslinked matrix Via IP | MgCl2 solution heavy metal wastewater (Cu2+, and Ni2+ and Pb2+) | Jw of 20.8 LMH Js = 5.2 gMH Heavy metal ions rejection (>96%) | [75] |
Membrane Type | Tested on | Filler | GO NPs Concentration | Modification Technique | Target Solute (Applications) | Methods | Parameters Achieved | References |
---|---|---|---|---|---|---|---|---|
Commercial Mixed cellulose ester membrane (CTA-ES) | Pressurized filtration tests and FO process system | Silver nanoparticle (nAg)@polydopamine (PDA)-rGO membrane | 0.006 mg/mL GO aqueous solution | Surface modification (onto substrate surface) | Sodium chloride (NaCl) Pseudomonas aeruginosa PAO1 was used as a model microorganism for (biofouling propensity) | (Vacuum-filtered deposition of GO+ Dipping into DA solution and then deposit silver nitrate solution) | R% of salt nAg@pDA-rGO (65.6%) and pDA-rGO (59.5%). Jw: pDA-rGO (34.0 LMH). Jw: nAg@pDA-rGO (28.9 LMH). Js: 1 mol/m2/h for pDA-rGO Js: 0.85 mol/m2/h for nAg@pDA-rGO | [94] |
Commercial Mixed cellulose ester (MCE) membrane | FO system | polydopamine/R-graphene oxide (PDA-rGO) | 0.006 mg/mL GO aqueous solution | Surface modification (onto substrate surface) | sodium chloride (NaCl) | Vacuum filtration deposition of GO + dipping in dopamine solution. | Js: 0.04 mol/m2h Jw: 29.8–36.18 LMH R% of salt = 92%. | [95] |
Commercial polysulfone (PS-UF) | NF Experiment | PSF/PDA/TMC/GO | 0.5 g/L of GO solution | PDA as intermediate layer. GO was grafted onto PA layer | organic dyes and salt solutions (methyl blue, Congo red, acid fuchsin, crystal violet, methyl orange) NaCl, Na2SO4, and Na3 PO4 | LBL self-assembly method (immersion) | R% of MB = 78% Permeation flux of MB = 70 kgm−2h−1 R% of PO4−3 = 92% Permeation flux PO43− = 120 kgm−2h−1 FRR = 90% | [91] |
PES membrane via phase separation method | NF Filtration system | GO-PDA/PES | 5 mg/L of GO | Surface modification (onto substrate surface) | Dyes | PDA layer via Coating + filtration-assisted assembly strategy for depositing GO. | Water permeability = 85 LMH/bar R% of Dyes = 95%, 100% | [84]. |
poly(arylene ether nitrile) PEN nanofibrous by electrospinning | Dead-end flow filtration experimental device connected with a solution reservoir at constant pressure of 0.1 MPa | PEN/GO-PDA | 25 µ/mL of GO | Surface modification (onto substrate surface) | Dyes (Direct Blue 14, Direct Red 28, Direct Yellow 4, and Methylene Blue) | GO skin layer formed by Vacuum filtration. Followed by Immersing PEN/GO nanofibrous into dopamine solution | Permeate flux = 99.7 LMH R% of Direct Blue 14 = 99.8% | [88] |
Commercial NF90 membrane | NF Experiment | PDA-GO | 50 mg/L of GO solution. | Printed on the membrane surface. | NaCl | Inkjet printing | Water permeability = 11.63 LMH/bar R% of salt = 92.42% | [93] |
Polyvinylidene fluoride (PVDF via phase inversionmethod | Vacuum filter apparatus | PVDF /RGO@SiO2/PDA nanohybrid membranes | 2 mg of GO/(0.67, 1.34, 2, and 2.67) mg of SiO2 | Surface modification (onto substrate surface) | Oil water emulsion dye wastewater (MB) | Vacuum-assisted filtration self-assembly process for depositing RGO@SiO2 film onto membrane surface. Then RGO@SiO2 membrane soaked into DA solution | Water permeability = 475.5 LMH/bar R% of MB = 98% FRR% = 87.2% | [89] |
Electrospun of poly (arylene ether nitrile) PEN nanofibrous mats (supporting layer) | Oil/water separationvacuum filter apparatus | Poly (arylene ether nitrile) (PEN)/HNTs@GO-PDA nanofibrous composite membranes | 50 µ/ML of GO. (0, 25, 50, 100 and 150) µ/mL of PDA modified HNTs | Surface modification (onto substrate surface) | Oil/water emulsion | (HNTs intercalated GO hybrids were assembled onto porous PEN supporting layer by Vacuum filtration deposition. Followed by crosslinking of dopamine. | Jw = 1130.56 LMH R% > 99% | [87] |
Mixed cellulose ester membrane (MCEM) | Vacuum filter apparatus | GO/PDA/MCEM | 100 mg/L of GO suspension. | Surface modification (onto substrate surface) | Oil | PDA deposited by oscillation incubator for 24 h. Followed by GO deposition by Vacuum filtration | Permeate flux = 146 LMH/bar R% of oil = 96% | [85] |
Porous aluminaα-Al2O3 supports. | Tested for Seawater desalination at 30~90 °C by pervaporation | GO-PDA | 0.01–1 mg/mL of GO suspension. | Surface modification onto Al2O3 support surface | Sea salt | Vacuum filtration of GO onto PDA-Al2O3 supports | Jw = 48.4 LMH ’R% of oi; >99.7% | [86] |
Commercial Polysulfone (PSf)-UF | Crossflow Filtration cell-UF | PDA/aGO(activated) | 0.1 g/L GO solution | Surface modification onto UF substrate surface | Sodium alginate (SA) | Coating of PDA and Grafting of aGO. | Water permeability = 830 LMH/bar Jw = 135 LMH Flux increased by 20% Fouling rate reduced by 63% | [92] |
n-poly-(ethylene terephthalate) PET-UF | - | rGO-PDA-PET | - | Surface modification (onto substrate surface) | - | Drop-casting methodPET substrates were immersed in an aqueous solution of dopamine. GO dispersion was drop casted onto the polydopamine-modified PET substrates. | - | [90] |
Membrane Type | Tested on | Filler | Deposition Time of PDA-f-GO Concentration of DA and GO NPs | Modification Technique of PDA-f-GO Layer | Target Solute (Applications) | Methods | Parameters Achieved | References |
---|---|---|---|---|---|---|---|---|
Five substrates: Hydrophilic poly (vinylidene fluoride) membrane (PVDF) Highly hydrophilic PVDF Nonwoven PAN Freestanding PAN Titania-coated carbon nanotube (TCNT) on the nonwoven PAN substrate | FO system setup | PDA-f-GO then polyethylenimine/poly (acrylic acid) (PEI/PAA) layers and subsequent PA layer formation. | 4 h 1 g DA and 20 mg GO Added into Tris solution | As an intermediate layer | Sodium chloride (NaCl) | PA formed via layer-by-layer method. Coating of PDA-GO as interlayer (soaking membrane in PDA-GO solution for 4 h) | Jw = 6.75 (LMH) Js = 1.7 (gMH) By mLBL3 for the nonwoven PAN | [96] |
polysulfone (PSf) support via phase inversion | FO system setup | polydopamine/graphene oxide (PDA/GO) interlayer-PA | (1–5 h) 0.1 g DA and 5 mL of the GO–DI water mixture Added into Tris solution | As an intermediate layer | Sodium chloride (NaCl) PEG | PDA/GO layer formed via (Immersing, coating) of PSF membrane. PA layer formed through Interfacial polymerization. | Jw = 24.296 LMH Js = 3.818 gMH | [97] |
Flat sheets TFC FO membrane (HTI, OsMem™ TFC Membrane | FO system setup | PDA-GO | Various GO concentration and various deposition time | Grafting onto PA rejection layer | NaCl | Coating and shaking | Jw = 13.63 LMH Js: 0.68 mg/min | [98] |
polyethersulfone (PES) membrane | ultra-low pressure reverse osmosis (ULPRO) | dopamine-stabilized graphene-based (xGnP-DA) | Not available | Blending with polymer matrix | NaCl and Synthetic Seawater Solutions | Phase inversion. Casting. PES + PVP + NMP + (GO + DA) | Jw = 19LMH at 8 bar FRR% = 99.9% R% = 99.95% | [99] |
Polysulfone membrane | UF system setup | rGO-PDA | Not available | Blending with polymer matrix | BSA Bovine serum albumin HA Humic acidSO, ORII, MB and DR80 dyes | Phase inversion technique. | Water permeability = 326.5 LMH/bar R% of BSA = 100% R% of MB = 87% FRR% of BSA = 80.4 % FRR% of HA = 99.4% | [83] |
Hydrolyzed commercial polyacrylonitrile(h-PAN) | UF system setup | PDA-GO | 75 mg DA 75 mg GO Added into Tris solution | Surface modification onto substrate surface | Ethanol–H2O mixture isopropyl alcohol–H2O mixture | simple vacuum filtration method. | Permeation flux = 2273 g m−2 h−1 | [100] |
Non-woven fabrics (purchased from Paper Group Company). | Dead end filtration cell | GO-PDA- β-cyclodextrin (CD) | 16 mg GO into 1.8 mL DIW. Then 0.2 mL of DA solution (4 mg mL−1) added into the GO solution with the pH = 11 | Surface modification onto substrate surface | Organic molecules (methylene blue) Trace heavy metals (Pb2+). | Drop-coating combined with vacuum filtration. | Jw = 12 LMH R% of MB = 99.2 % | [101] |
PES membrane via (phase inversion) | NF system setup | Zm-PEI-GO@PDA/PES | 25 mg DA 50 mg GO powder Added into Tris solution | Surface modification onto substrate surface | Organic dyes | GO@PDA/PES via Filtration assisted assembly strategy.Zwitterionic polymer was grafted on the surface of PDA crosslinked GO membrane. | Water permeability = 49.5 LMH/bar R% of Congo Red = 100%, R% of Orange G = 82% R% of Methyl Orange = 67% | [102] |
Commercial Cellulose acetate (CA) substrate | Vacuum extraction filter | PDA/RGO/UiO-66 | 25 mL GO solution 0.1 g DA | Surface modification onto substrate surface | dye wastewater. | vacuum-assisted filtration self-assembly method. | Jw = 167.14 LMH R% of MB = 99.54% R% of Congo Red = 87.36% | [103] |
CA support | shake flask method | GO-PDA. GO-PDA-PEI | Not available | GO-PDA-PEI membrane was peeled off from the CA support. | Bacterial cells (S. aureus and E. coli) | vacuum-assisted filtration self-assembly | Antibacterial efficiency > 99% | [104] |
Cellulose acetate membrane support layer | vacuum suction device | PDA/RGO/HKUST-1 metal-organic frameworks (HKUST-1) | 125 mg GO 50 mg DA Various (HKUST-1) concentrations. | Surface modification onto substrate surface | dye wastewater. (Methylene blue and Congo red) | vacuum filtration. | Jw = 184.71 LMH R% of MB = 99.8% R% of Congo Red = 89.2%, | [105] |
Commercial PS30 | UF system setup | GO-PDA NPs | 100 mg GO powder and 200 mg DA added into Tris solution | Surface modification onto substrate surface | - | pressure-assisted self-assembly technique (PAS) | - | [82] |
Commercial Hydrophilic polyvinylidene fluoride (PVDF) membranes | Molecular dynamics (MD) simulations | Dopamine-functionalized graphene oxide (DGO) -MXene(Ti3C2Tx) | 0.4 g GO NSs dispersed in DI and 0.02 g DA added into Tris solution | Surface modification onto substrate surface | Dye and salts mixed solution (NaCl, MgSO4) | vacuum filtration deposition | Jw = 63.5 LMH Dyes rejection 98.1% and 96.1% | [106] |
Commercial Cellulose acetate (CA) membrane | NF system setup | PDA/RGO/halloysite nanotubes (HNTs) | Not available | Surface modification onto substrate surface | Oil water emulsion, Dyes and heavy metals | Vacuum filtration deposition | Permeate flux = 23.53–60.32 LMH R% = 99% FRR% = 82.27% | [107] |
Mixed cellulose ester (MCE) filter membrane | Separation device (Vacuum filtration system) | PDA-rGO | Not available | Surface modification onto substrate surface | Oil | Vacuum filtration | Separation efficiency = 99.6% | [108] |
rGO-PDA-1H,1H,2H,2H-perfluorodecanethiol PFDT membrane | Separation device (Vacuum filtration system) | rGO-PDA-PFDT | 3 mg DA and 3 mg GO | - | Oil (organic solvents) | Vacuum filtration through a Whatman filter paper. | = | [109] |
isotactic polypropylene(iPP) hollow fiber membrane via thermally induced phase separation (TIPS) process | Membrane filtration system | iPP@PDA@GO membrane | 200 mg DA, 200 mg GO and 200 mg APTES | Membrane immersed into PDA + GO + APTES solution | Oil | Immersing coating | Oil-water permeation = 188 LMH in 0.1 MPa Oil rejection (>99%) | [110] |
A commercial RO membrane (BW4040 AFR) | RO lab scale | GO-PDA | GO powder (50 mg) a dopamine solution (300 mL) contains dopamine hydrochloride (2%) added into Tris solution | Onto (top of) the active layer | NaCl | Coating single-pot technique | 3.8% decline in the flux value. R% of NaCl > 97% | [111] |
Nylon membrane | Filtration device | RGO/PDA/MXene (titanium carbide) | 100 mg of dopamine hydrochloride. 150 mL of graphite oxide solution—150 mL of a certain amount of MXene solution all added into Tris solution. | Surface modification onto substrate. surface | Oil and chemical dyes | (Vacuum filtration deposition method) RGO/PDA/MXene solution filtered on a dopamine-impregnated nylon membrane | Permeability = 174.16 LMH/bar Dye rejection 95% | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abounahia, N.; Qiblawey, H.; Zaidi, S.J. Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. Membranes 2022, 12, 675. https://doi.org/10.3390/membranes12070675
Abounahia N, Qiblawey H, Zaidi SJ. Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. Membranes. 2022; 12(7):675. https://doi.org/10.3390/membranes12070675
Chicago/Turabian StyleAbounahia, Nada, Hazim Qiblawey, and Syed Javaid Zaidi. 2022. "Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance" Membranes 12, no. 7: 675. https://doi.org/10.3390/membranes12070675
APA StyleAbounahia, N., Qiblawey, H., & Zaidi, S. J. (2022). Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. Membranes, 12(7), 675. https://doi.org/10.3390/membranes12070675