Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mesoporous Membrane Materials
2.3. Methods
2.3.1. Differential Scanning Calorimetry
2.3.2. Ozonation
2.3.3. Fouirier Transform IR-Spectroscopy
2.3.4. Atomic Force Microscopy (AFM)
2.3.5. Pressure-Driven Liquid Permeability Method for Water Flow Estimation
2.3.6. Mechanical Tests
2.3.7. Water Contact Angle Measurements
3. Results
3.1. Mesoporous Membranes Based on High-Density Polyethylene: Preparation and Performance: Preparation, Structure, and Performance
3.2. Ozonation of HDPE Mesoporous Membranes
3.3. The Effect of Ozonation on Structure and Performance of Mesoporous HDPE Membranes
3.3.1. Fourier Transform IR Spectroscopy for Ozonated Mesoporous HDPE Membranes
3.3.2. Differential Scanning Calorimetry
3.3.3. Water Contact Angle
3.3.4. Water Permeability
3.3.5. Mechanical Tests
3.3.6. AFM Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista—The Statistics Portal for Market Data, Market Research and Market Studies. Available online: https://www.statista.com/statistics/1245162/polyethylene-market-volume-worldwide/ (accessed on 31 May 2022).
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. NIM-B 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Torchio, A.; Cassino, C.; Chiono, V.; Ciardelli, G. Plasma Treatment of Polymer Powder as an Effective Tool to Functionalize Polymers: Case Study Application on an Amphiphilic Polyurethane. Polymers 2019, 11, 2109. [Google Scholar] [CrossRef] [Green Version]
- Kowalonek, J.; Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Chylińska, M. Corona Charging of Isotactic-Polypropylene Composites. Polymers 2021, 13, 942. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [Green Version]
- Inamuddin, M. Advanced Functional Polymers and Composites; Materials, devices and allied applications; NOVA Science Publisher: New York, NY, USA, 2014; Volume 1, pp. 1–368. [Google Scholar]
- Mozafari, M.; Chauhan, N.P.S. Advanced Functional Polymers for Biomedical Applications, 1st ed.; Elsevier: London, UK, 2019; pp. 1–430. [Google Scholar]
- Lu, Z.; Yin, R.; Yao, J.; Leung, C.K.Y. Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of strain-hardening cementitious composites. Compos. Part B Eng. 2019, 177, 107446. [Google Scholar] [CrossRef]
- Lee, R.; Coote, M.L. Mechanistic insights into ozone-initiated oxidative degradation of saturated hydrocarbons and polymers. Phys. Chem. Chem. Phys. 2016, 18, 24663–24671. [Google Scholar] [CrossRef]
- Mahfoudh, A.; Moisan, M.; Poncin-Épaillard, F.; Barbeau, J. Effect of dry-ozone exposure on different polymer surfaces and their resulting biocidal action on sporulated bacteria. Surf. Sci. 2010, 604, 1487–1493. [Google Scholar] [CrossRef]
- Sham, M.L.; Li, J.; Ma, P.C.; Kim, J.-K. Cleaning and Functionalization of Polymer Surfaces and Nanoscale Carbon Fillers by UV/Ozone Treatment: A Review. J. Compos. Mater. 2009, 43, 1537–1564. [Google Scholar] [CrossRef]
- Remondino, M.; Valdenassi, L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability 2018, 10, 4783. [Google Scholar] [CrossRef] [Green Version]
- Peeling, J.; Clark, D.T. Surface ozonation and photooxidation of polyethylene film. J. Polym. Sci. A Polym. Chem. 1983, 21, 2047–2055. [Google Scholar] [CrossRef]
- Zafar, R.; Park, S.Y.; Kim, C.G. Surface modification of polyethylene microplastic particles during the aqueous-phase ozonation process. Environ. Eng. Res. 2021, 26, 200412. [Google Scholar] [CrossRef]
- Gu, H.; Wu, J.; Chan, P.; Turcotte, G.; Ye, T. Hydrophilicity modification of polypropylene microfiltration membrane by ozonation. Chem. Eng. Res. Des. 2012, 90, 229–237. [Google Scholar] [CrossRef]
- Kurose, K.; Okuda, T.; Nakai, S.; Tsai, T.-Y.; Nishijima, W.; Okada, M. Hydrophilization of polyvinil chloride surface bt ozonation. Surf. Rev. Lett. 2008, 15, 711–715. [Google Scholar] [CrossRef]
- Mathieson, I.; Bradley, R.H. Improved adhesion to polymers by UV/ozone surface oxidation. Int. J. Adhes. Adhes. 1996, 16, 29–31. [Google Scholar] [CrossRef]
- Robin, J.J. Overview of the Use of Ozone in the Synthesis of New Polymers and the Modification of Polymers. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 167, pp. 35–80. [Google Scholar]
- Zaikov, G.; Slavcho, E.R. Ozonation of Organic and Polymer Compounds; iSmithers: Shrewsbury, UK, 2009; pp. 1–412. [Google Scholar]
- Gu, H.; Wu, J.; Doan, H. Hydrophilicity Enhancement of High-Density Polyethylene Film by Ozonation. Chem. Eng. Technol. 2009, 32, 726–731. [Google Scholar] [CrossRef]
- Oh, S.H.; Lee, J.H. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed. Mater. 2013, 8, 014101. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Wan, L.; Xu, Z.-K. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J. Memb. Sci. 2010, 362, 255–264. [Google Scholar] [CrossRef]
- Dvořáková, H.; Čech, J.; Stupavská, M.; Prokeš, L.; Jurmanová, J.; Buršíková, V.; Ráheľ, J.; Sťahel, P. Fast Surface Hydrophilization via Atmospheric Pressure Plasma Polymerization for Biological and Technical Applications. Polymers 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, P.-F.; Yang, H.-C.; Wan, L.-S.; Xu, Z.-K. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Appl. Surf. Sci. 2016, 360, 291–297. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Y.; Cao, J.; Guan, J.; Zhang, R.; He, M.; Fan, L.; Zhang, Q.; Jiang, Z. Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. J. Memb. Sci. 2017, 542, 254–263. [Google Scholar] [CrossRef]
- Vasita, R.; Mani, G.; Agrawal, C.M.; Katti, D.S. Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polymer 2010, 51, 3706–3714. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Koga, N.; Schick, C.V. Handbook of Thermal Analysis and Calorimetry; Cheng, S.Z.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 3, pp. 1–828. [Google Scholar]
- Satkowski, M. The Crystallization and Morphology of Polyethylene and Its Blends. Ph.D. Dissertation, University of Massachusetts, Amherst, MA, USA, February 2014. [Google Scholar]
- Furushima, Y.; Nakada, M.; Murakami, M.; Yamane, T.; Toda, A.; Schick, C. Method for calculation of the lamellar thickness distribution of not-reorganized linear polyethylene using fast scanning calorimetry in heating. Macromolecules 2015, 48, 8831–8837. [Google Scholar] [CrossRef]
- Bellamy, L.J. Advances in Infrared Group Frequencies; Methuen: London, UK, 1968; pp. 1–305. [Google Scholar]
- Filonov, A.; Yaminsky, I.; Akhmetova, A.; Meshkov, G. FemtoScan Online. Why? Nanoindustry 2018, 11, 336–342. [Google Scholar] [CrossRef]
- Volynskii, A.L.; Bakeev, N.F. Solvent Crazing of Polymers, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 1–410. [Google Scholar]
- Volynskii, A.L.; Bakeev, N.F. Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers, 1st ed.; CRC Press: London, UK, 2016. [Google Scholar]
- Kinloch, A.J.; Young, R.J. Fracture Behaviour of Polymers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Arzhakova, O.V.; Dolgova, A.A.; Yarysheva, A.Y.; Nikishin, I.I.; Volynskii, A.L. Mechanoresponsive Hard Elastic Materials Based on Semicrystalline Polymers: From Preparation to Applied Properties. ACS Appl. Polym. Mater. 2020, 2, 2338–2349. [Google Scholar] [CrossRef]
- Arzhakova, O.V.; Dolgova, A.A.; Rukhlya, E.G.; Volynskii, A.L. Environmental crazing and properties of mesoporous and nanocomposite materials based on poly(tetrafluoroethylene) films. Polymer 2019, 161, 151–161. [Google Scholar] [CrossRef]
- Arzhakova, O.V.; Prishchepa, D.V.; Dolgova, A.A.; Volynskii, A.L. The effect of preliminary orientation on environmental crazing of high-density polyethylene films. Polymer 2019, 170, 179–189. [Google Scholar] [CrossRef]
- Arzhakova, O.V.; Nazarov, A.I.; Solovei, A.R.; Dolgova, A.A.; Kopnov, A.Y.; Chaplygin, D.K.; Tyubaeva, P.M.; Yarysheva, A.Y. Mesoporous Membrane Materials Based on Ultra-High-Molecular-Weight Polyethylene: From Synthesis to Applied Aspects. Membranes 2021, 11, 834. [Google Scholar] [CrossRef]
- HSP Basics—Practical Solubility Science—Prof Steven Abbott. Available online: https://www.stevenabbott.co.uk/practical-solubility/hsp-basics.php (accessed on 31 May 2022).
- Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 2019, 31, 1802922. [Google Scholar] [CrossRef]
- Cho, Y.; Park, C.H. Objective quantification of surface roughness parameters affecting superhydrophobicity. RSC Adv. 2020, 10, 31251–31260. [Google Scholar] [CrossRef]
- Tyubaeva, P.; Zykova, A.; Podmasteriev, V.; Olkhov, A.; Popov, A.; Iordanskii, A. The investigation of the structure and properties of ozone-sterilized nonwoven biopolymer materials for medical applications. Polymers 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Boucher, E. Wettability and adhesion of polyethylene. Nature 1967, 215, 1054–1071. [Google Scholar] [CrossRef]
- O’Donnell, C.P.; Tiwari, B.K.; Cullen, P.J.; Rice, R.G. Ozone in Food Processing; Wiley: New York, NY, USA, 2012; pp. 1–312. [Google Scholar]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Application, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 1–369. [Google Scholar]
Sample | Time of Ozonation, s | Ozone Uptake, L (±0.05 × 10−9 L) |
---|---|---|
Pristine HDPE | 250 | 0.8 × 10−9 |
Mesoporous HDPE | 250 | 4.2 × 10−9 |
Pristine HDPE | 600 | 0.9 × 10−9 |
Mesoporous HDPE | 600 | 5.6 × 10−9 |
Time of Ozonation, s | Melting Temperature, Tm, °C | Heat of Fusion, ΔH, J/g | Degree of Crystallinity χ, % |
---|---|---|---|
0 | 126.6 | 169.5 | 57.8 |
600 | 126.0 | 144.5 | 49.3 |
25,200 | 123.7 | 265.1 | 90.47 |
Sample | Time of Ozonation, s | Tensile Strength, MPa (±0.02 MPa) | Elongation at Break, % (±0.2%) |
---|---|---|---|
Mesoporous HDPE | 0 | 6.8 | 220.3 |
Ozonated mesoporous HDPE | 600 | 8.4 | 180.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyubaeva, P.M.; Tyubaev, M.A.; Podmasterev, V.V.; Bolshakova, A.V.; Arzhakova, O.V. Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation. Membranes 2022, 12, 733. https://doi.org/10.3390/membranes12080733
Tyubaeva PM, Tyubaev MA, Podmasterev VV, Bolshakova AV, Arzhakova OV. Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation. Membranes. 2022; 12(8):733. https://doi.org/10.3390/membranes12080733
Chicago/Turabian StyleTyubaeva, Polina M., Mikhail A. Tyubaev, Vyacheslav V. Podmasterev, Anastasia V. Bolshakova, and Olga V. Arzhakova. 2022. "Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation" Membranes 12, no. 8: 733. https://doi.org/10.3390/membranes12080733
APA StyleTyubaeva, P. M., Tyubaev, M. A., Podmasterev, V. V., Bolshakova, A. V., & Arzhakova, O. V. (2022). Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation. Membranes, 12(8), 733. https://doi.org/10.3390/membranes12080733