Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. FO Concentration Process
2.3. Membrane-Fouling Analysis
2.4. Determination of Total Anthocyanin Content (TAC)
2.5. Determination of Clarity
2.6. Determination of TPC
2.7. Determination of Total Sugar Content
2.8. Determination of pH, TSS, and Particle Size
2.9. Determination of Chromatic Aberration
2.10. Analysis of Anthocyanins by High-Performance Liquid Chromatography (HPLC)
2.11. Determination of Food Additives in Concentrated Juice
2.12. Storage Experiment of Concentrated Blueberry Juice
2.13. Statistical Analysis
3. Results and Discussions
3.1. Effects of DSs on Water Flux and Membrane Fouling
3.2. Effects of DSs on Characteristics of Blueberry Juice
3.2.1. Effects on Physicochemical Properties
3.2.2. Effects on Particle Size
3.2.3. Effects on the Anthocyanins Profile
3.3. Effects of DS on Reverse Salt Fluxes and Juice Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haas, I.C.d.S.; de Espindola, J.S.; de Liz, G.R.; Luna, A.S.; Bordignon-Luiz, M.T.; Prudêncio, E.S.; de Gois, J.S.; Fedrigo, I.M.T. Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives. J. Food Eng. 2022, 315, 110802. [Google Scholar] [CrossRef]
- Linhares, M.d.F.D.; Alves Filho, E.G.; Silva, L.M.A.; Fonteles, T.V.; Wurlitzer, N.J.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136, 109506. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Wang, Z.; Dong, L.; Huang, F.; Zhang, R.; Jia, X.; Wu, G.; Zhang, M. Impact of thermal processing and storage temperature on the phenolic profile and antioxidant activity of different varieties of lychee juice. LWT 2019, 116, 108578. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Guerra-Valle, M.; Gianelli, M.P.; Petzold, G. Evaluation of freeze crystallization on pomegranate juice quality in comparison with conventional thermal processing. Food Biosci. 2021, 41, 101106. [Google Scholar] [CrossRef]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food Bioprod. Process. 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimum design of a multi-stage reverse osmosis process for the production of highly concentrated apple juice. J. Food Eng. 2017, 214, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Onsekizoglu Bagci, P.; Kahvecioglu, H.; Gulec, H.A.; Bagci, U. Pomegranate juice concentration through the consecutive application of a plasma modified reverse osmosis membrane and a membrane contactor. Food Bioprod. Process. 2020, 124, 233–243. [Google Scholar] [CrossRef]
- Wenten, I.G.; Khoiruddin, K.; Reynard, R.; Lugito, G.; Julian, H. Advancement of forward osmosis (FO) membrane for fruit juice concentration. J. Food Eng. 2021, 290, 110216. [Google Scholar] [CrossRef]
- Tavares, H.M.; Tessaro, I.C.; Cardozo, N.S.M. Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. Innov. Food Sci. Emerg. Technol. 2022, 75, 102905. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Forward osmosis technology for water treatment: Recent advances and future perspectives. J. Clean. Prod. 2021, 280, 124354. [Google Scholar] [CrossRef]
- Dsilva Winfred Rufuss, D.; Kapoor, V.; Arulvel, S.; Davies, P.A. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review. J. Clean. Prod. 2022, 356, 131769. [Google Scholar] [CrossRef]
- Kim, B.; Gwak, G.; Hong, S. Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S). Desalination 2017, 422, 5–16. [Google Scholar] [CrossRef]
- Nayak, C.A.; Valluri, S.S.; Rastogi, N.K. Effect of high or low molecular weight of components of feed on transmembrane flux during forward osmosis. J. Food Eng. 2011, 106, 48–52. [Google Scholar] [CrossRef]
- An, X.; Hu, Y.; Wang, N.; Zhou, Z.; Liu, Z. Continuous juice concentration by integrating forward osmosis with membrane distillation using potassium sorbate preservative as a draw solute. J. Membr. Sci. 2019, 573, 192–199. [Google Scholar] [CrossRef]
- Alejo, T.; Arruebo, M.; Carcelen, V.; Monsalvo, V.M.; Sebastian, V. Advances in draw solutes for forward osmosis: Hybrid organic-inorganic nanoparticles and conventional solutes. Chem. Eng. J. 2017, 309, 738–752. [Google Scholar] [CrossRef]
- Pei, J.; Pei, S.; Wang, W.; Li, S.; Youravong, W.; Li, Z. Athermal forward osmosis process for the concentration of liquid egg white: Process performance and improved physicochemical property of protein. Food Chem. 2020, 312, 126032. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Brashears, M.M.; Zhong, Q. Sodium benzoate and sodium bisulfate as preservatives in apple juice and alternative sanitizers for washing cherry tomatoes. Int. J. Food Microbiol. 2022, 372, 109697. [Google Scholar] [CrossRef] [PubMed]
- Tighrine, A.; Amir, Y.; Alfaro, P.; Mamou, M.; Nerín, C. Simultaneous extraction and analysis of preservatives and artificial sweeteners in juices by salting out liquid-liquid extraction method prior to ultra-high performance liquid chromatography. Food Chem. 2019, 277, 586–594. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Rocha, I.F.; Bolini, H.M.A. Different sweeteners in passion fruit juice: Ideal and equivalent sweetness. LWT-Food Sci. Technol. 2015, 62, 861–867. [Google Scholar] [CrossRef]
- Wangprasertkul, J.; Siriwattanapong, R.; Harnkarnsujarit, N. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control 2021, 123, 107763. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Zhong, Q. Potential of acidified sodium benzoate as an alternative wash solution of cherry tomatoes: Changes of quality, background microbes, and inoculated pathogens during storage at 4 and 21 °C post-washing. Food Microbiol. 2019, 82, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gurtler, J.B.; Bailey, R.B.; Geveke, D.J.; Zhang, H.Q. Pulsed electric field inactivation of E. coli O157:H7 and non-pathogenic surrogate E. coli in strawberry juice as influenced by sodium benzoate, potassium sorbate, and citric acid. Food Control 2011, 22, 1689–1694. [Google Scholar] [CrossRef]
- Zhang, K.; An, X.; Bai, Y.; Shen, C.; Jiang, Y.; Hu, Y. Exploration of food preservatives as draw solutes in the forward osmosis process for juice concentration. J. Membr. Sci. 2021, 635, 119495. [Google Scholar] [CrossRef]
- Pei, J.; Wang, W.; Wang, Y.; Wang, H.; Bucs, S.S.; Vrouwenvelder, J.S.; Li, Z. Fate of polyphenols in forward osmosis. J. Membr. Sci. 2021, 621, 118993. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, J.; Méndez-Lagunas, L.L.; López-Ortiz, A.; Muñiz-Becerá, S.; Nair, K. Solar drying of strawberry using polycarbonate with UV protection and polyethylene covers: Influence on anthocyanin and total phenolic content. Sol. Energy 2021, 221, 120–130. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, P.P.; De, S. Clarification and storage study of bottle gourd (Lagenaria siceraria) juice by hollow fiber ultrafiltration. Food Bioprod. Process. 2016, 100, 1–15. [Google Scholar] [CrossRef]
- Méndez-Lagunas, L.; Rodríguez-Ramírez, J.; Cruz-Gracida, M.; Sandoval-Torres, S.; Barriada-Bernal, G. Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chem. 2017, 230, 174–181. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Liu, J.; Hu, L.; Huang, Y.; Yuan, L.; Liu, F.; Pan, S.; Chen, S.; Bian, S.; et al. Purification of polysaccharide from Lentinus edodes water extract by membrane separation and its chemical composition and structure characterization. Food Hydrocoll. 2020, 105, 105851. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Peng, Z.; Zhao, Y.; Wu, K.; Zhou, N.; Yan, Y.; Ramaswamy, H.S.; Sun, J.; Bai, W. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chem. 2020, 333, 127455. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.M.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity. LWT 2021, 150, 112021. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef] [PubMed]
- Gören, A.C.; Bilsel, G.; Şimşek, A.; Bilsel, M.; Akçadağ, F.; Topal, K.; Ozgen, H. HPLC and LC–MS/MS methods for determination of sodium benzoate and potassium sorbate in food and beverages: Performances of local accredited laboratories via proficiency tests in Turkey. Food Chem. 2015, 175, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Trishitman, D.; Negi, P.S.; Rastogi, N.K. Concentration of beetroot juice colorant (betalains) by forward osmosis and its comparison with thermal processing. LWT 2021, 145, 111522. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Li, J.-Y.; Ni, Z.-Y.; Zhou, Z.-Y.; Hu, Y.-X.; Xu, X.-H.; Cheng, L.-H. Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. J. Membr. Sci. 2018, 552, 213–221. [Google Scholar] [CrossRef]
- Kim, D.I.; Gwak, G.; Zhan, M.; Hong, S. Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality. J. Membr. Sci. 2019, 578, 53–60. [Google Scholar] [CrossRef]
- Ge, Q.; Chung, T.-S. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chem. Commun. 2013, 49, 8471–8473. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J. Membr. Sci. 2011, 379, 459–467. [Google Scholar] [CrossRef]
- She, Q.; Wang, R.; Fane, A.G.; Tang, C.Y. Membrane fouling in osmotically driven membrane processes: A review. J. Membr. Sci. 2016, 499, 201–233. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Ren, S.; Pei, J.; Li, Z. Athermal concentration of apple juice by forward osmosis: Process performance and membrane fouling propensity. Chem. Eng. Res. Des. 2022, 177, 569–577. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, S.; Zhao, G.; Ye, F. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci. Technol. 2021, 116, 1141–1154. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes 2014, 4, 509–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Wang, Y.; Xie, P.; Zhang, L.; Li, Y.; Zhou, J. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chem. 2019, 275, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh, L.; Delalonde, M.; Ricci, J.; Servent, A.; Dornier, M.; Wisniewski, C. Size-cartography of orange juices foulant particles: Contribution to a better control of fouling during microfiltration. J. Membr. Sci. 2016, 509, 164–172. [Google Scholar] [CrossRef]
- Zhu, D.; Shen, Y.; Wei, L.; Xu, L.; Cao, X.; Liu, H.; Li, J. Effect of particle size on the stability and flavor of cloudy apple juice. Food Chem. 2020, 328, 126967. [Google Scholar] [CrossRef]
- Terán Hilares, R.; dos Santos, J.G.; Shiguematsu, N.B.; Ahmed, M.A.; da Silva, S.S.; Santos, J.C. Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: Effects on physical properties and stability of bioactive compounds. Ultrason. Sonochem. 2019, 54, 192–197. [Google Scholar] [CrossRef]
- Cai, M.; Xie, C.; Zhong, H.; Yang, K.; Sun, P. Insights into changes of anthocyanins-rich blueberry extracts concentrated by different nanofiltrations and their storage stability. LWT 2021, 144, 111196. [Google Scholar] [CrossRef]
- Brauch, J.E.; Reuter, L.; Conrad, J.; Vogel, H.; Schweiggert, R.M.; Carle, R. Characterization of anthocyanins in novel Chilean maqui berry clones by HPLC–DAD–ESI/MSn and NMR-spectroscopy. J. Food Compos. Anal. 2017, 58, 16–22. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Sun, H.; He, S.; Liu, S.; Zhang, T.; Wang, L.; Ma, G. Research progress of anthocyanin prebiotic activity: A review. Phytomedicine 2022, 102, 154145. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, G.; Yu, Y.; Xu, Y.; Wu, J.; Zou, B.; Li, L. Low-oxygen pulping combined with high hydrostatic pressure improve the stability of blueberry pulp anthocyanins and color during storage. Food Control 2022, 138, 108991. [Google Scholar] [CrossRef]
- Reque, P.M.; Steffens, R.S.; Jablonski, A.; Flôres, S.H.; Rios, A.d.O.; de Jong, E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 2014, 33, 111–116. [Google Scholar] [CrossRef]
- Wojdyło, A.; Teleszko, M.; Oszmiański, J. Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem. 2014, 152, 261–270. [Google Scholar] [CrossRef] [PubMed]
Draw Solution | Total Anthocyanin Content (TAC)/mg·L−1 | pH | Total Phenolic Content (TPC)/g·L−1 | Clarity/% | Total Sugar/g·L−1 | Total Soluble Solid (TSS)/% | L * | a * | b * | ΔE | |
---|---|---|---|---|---|---|---|---|---|---|---|
Citric acid | OS 1 | 599.49 ± 9.37 | 2.64 ± 0.01 | 5.39 ± 0.05 | 0.18 ± 0.01 | 125.04 ± 6.96 | 15.13 ± 0.05 | 32.51 ± 0.16 | 0.15 ± 0.22 | −0.87 ± 0.17 | 0.47 ± 0.12 |
CS 2 | 752.56 ± 29.04 | 2.36 ± 0.02 | 6.52 ± 0.10 | 0.17 ± 0.01 | 150.34 ± 2.64 | 18.14 ± 0.06 | 32.78 ± 0.36 | −0.04 ± 0.20 | −0.97 ± 0.15 | ||
Potassium sorbate | OS | 613.41 ± 12.20 | 2.74 ± 0.01 | 4.91 ± 0.03 | 0.12 ± 0.01 | 123.73 ± 3.16 | 15.08 ± 0.63 | 28.17 ± 0.78 | 0.34 ± 0.22 | −0.07 ± 0.71 | 1.56 ± 0.87 |
CS | 735.31 ± 24.92 | 3.00 ± 0.01 | 5.43 ± 0.01 | 0.02 ± 0.05 | 138.79 ± 1.77 | 17.00 ± 0.10 | 28.67 ± 0.23 | 1.61 ± 1.01 | −0.47 ± 0.37 | ||
Sodium benzoate | OS | 607.84 ± 10.97 | 2.70 ± 0.01 | 5.60 ± 0.05 | 0.06 ± 0.00 | 123.44 ± 3.65 | 15.47 ± 0.04 | 27.85 ± 0.09 | 0.12 ± 0.08 | −0.17 ± 0.29 | 0.49 ± 0.25 |
CS | 716.10 ± 30.80 | 3.04 ± 0.01 | 6.53 ± 0.15 | 0.01 ± 0.00 | 146.39 ± 3.29 | 17.96 ± 0.20 | 27.88 ± 0.01 | 0.23 ± 0.20 | −0.61 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.; Zhang, Z.; Zhong, H.; Yang, K.; Sun, P.; Liao, X.; Cai, M. Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. Membranes 2022, 12, 808. https://doi.org/10.3390/membranes12080808
Chu H, Zhang Z, Zhong H, Yang K, Sun P, Liao X, Cai M. Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. Membranes. 2022; 12(8):808. https://doi.org/10.3390/membranes12080808
Chicago/Turabian StyleChu, Haoqi, Zhihan Zhang, Huazhao Zhong, Kai Yang, Peilong Sun, Xiaojun Liao, and Ming Cai. 2022. "Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution" Membranes 12, no. 8: 808. https://doi.org/10.3390/membranes12080808
APA StyleChu, H., Zhang, Z., Zhong, H., Yang, K., Sun, P., Liao, X., & Cai, M. (2022). Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. Membranes, 12(8), 808. https://doi.org/10.3390/membranes12080808