Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes
Abstract
:1. Introduction
2. Methods
3. Results and Discussions
3.1. Full-Covered 1L Flakes
3.2. 2L–2H Flakes
3.3. ML–2H, 3R and Mixed Flakes
3.4. Ring-like Flakes
3.5. ML–2H and 3R Nanotubes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y. Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts. ACS Nano 2021, 15, 11014–11039. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Cai, J.; Wang, G. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002. [Google Scholar] [CrossRef]
- Singh, S.; Modak, A.; Pant, K.K.; Sinhamahapatra, A.; Biswas, P. MoS2–Nanosheets-Based Catalysts for Photocatalytic CO2 Reduction: A Review. ACS Appl. Nano Mater. 2021, 4, 8644–8667. [Google Scholar] [CrossRef]
- Zhang, Q.; Ying, H.; Li, X.; Xiang, R.; Zheng, Y.; Wang, H.; Su, J.; Xu, M.; Zheng, X.; Maruyama, S.; et al. Controlled Doping Engineering in 2D MoS2 Crystals toward Performance Augmentation of Optoelectronic Devices. ACS Appl. Mater. Interfaces 2021, 13, 31861–31869. [Google Scholar] [CrossRef]
- Jadriško, V.; Radatović, B.; Pielić, B.; Gadermaier, C.; Kralj, M.; Vujičić, N. Structural and optical characterization of nanometer sized MoS2/graphene heterostructures for potential use in optoelectronic devices. FlatChem 2022, 34, 100397. [Google Scholar] [CrossRef]
- Gadelha, A.C.; Vasconcelos, T.L.; Cançado, L.G.; Jorio, A. Nano-optical Imaging of In-Plane Homojunctions in Graphene and MoS2 van der Waals Heterostructures on Talc and SiO2. J. Phys. Chem. Lett. 2021, 12, 7625–7631. [Google Scholar] [CrossRef]
- Liu, C.; Yin, Y.; Tong, B.; Zhang, G. Tribological properties of MoS2 powder-lubricated interface. Ind. Lubr. Tribol. 2021, 73, 839–845. [Google Scholar] [CrossRef]
- Tonge, P.; Roy, A.; Patel, P.; Beall, C.J.; Stoyanov, P. Tribological Evaluation of Lead-Free MoS2-Based Solid Film Lubricants as Environmentally Friendly Replacements for Aerospace Applications. Lubricants 2022, 10, 7. [Google Scholar] [CrossRef]
- Yi, M.; Qiu, J.; Xu, W. Tribological performance of ultrathin MoS2 nanosheets in formulated engine oil and possible friction mechanism at elevated temperatures. Tribol. Int. 2022, 167, 107426. [Google Scholar] [CrossRef]
- Strachan, J.; Masters, A.F.; Maschmeyer, T. 3R-MoS2 in Review: History, Status, and Outlook. ACS Appl. Energy Mater. 2021, 4, 7405–7418. [Google Scholar] [CrossRef]
- Zhao, M.; Ye, Z.; Suzuki, R.; Ye, Y.; Zhu, H.; Xiao, J.; Wang, Y.; Iwasa, Y.; Zhang, X. Atomically phase-matched second-harmonic generation in a 2D crystal. Light. Sci. Appl. 2016, 5, e16131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Johnson, H.T. Moiré-templated strain patterning in transition-metal dichalcogenides and application in twisted bilayer MoS2. Nanoscale 2018, 10, 20689–20701. [Google Scholar] [CrossRef] [PubMed]
- Joensen, P.; Frindt, R.; Morrison, S. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Zhou, G.; Rajak, P.; Susarla, S.; Ajayan, P.M.; Kalia, R.K.; Nakano, A.; Vashishta, P. Molecular Simulation of MoS2 Exfoliation. Sci. Rep. 2018, 8, 16761. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Park, J.; Hwang, J.Y.; Choi, W. Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Sci. Rep. 2013, 3, 1866. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, X.; Lu, Z.; Qiu, H.; Xu, G.; Zhou, X.; Wang, P.; Pan, X.; Liu, K.; Jiao, L. High-Mobility Multilayered MoS2 Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Hayashi, K.; Kataoka, M.; Jippo, H.; Yamaguchi, J.; Ohfuchi, M.; Sato, S. Highly Sensitive NO2 Detection by TVS-Grown Multilayer MoS2 Films. ACS Omega 2022, 7, 1851–1860. [Google Scholar] [CrossRef]
- Das, S.; Chen, H.Y.; Penumatcha, A.V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2013, 13, 100–105. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, S.; Choi, W. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation. Appl. Phys. Lett. 2016, 109, 152101. [Google Scholar] [CrossRef]
- Rhuy, D.; Lee, Y.; Kim, J.Y.; Kim, C.; Kwon, Y.; Preston, D.J.; Kim, I.S.; Odom, T.W.; Kang, K.; Lee, D.; et al. Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS2. Nano Lett. 2022, 22, 5742–5750. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi-Tash, H.; Belyaeva, L.A.; Schneider, G.F. Single molecule detection with graphene and other two-dimensional materials: Nanopores and beyond. Chem. Soc. Rev. 2016, 45, 476–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börrnert, F.; Fu, L.; Gorantla, S.; Knupfer, M.; Büchner, B.; Rümmeli, M.H. Programmable Sub-nanometer Sculpting of Graphene with Electron Beams. ACS Nano 2012, 6, 10327–10334. [Google Scholar] [CrossRef]
- Robertson, A.W.; Allen, C.S.; Wu, Y.A.; He, K.; Olivier, J.; Neethling, J.; Kirkland, A.I.; Warner, J.H. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 2012, 3, 1144. [Google Scholar] [CrossRef] [Green Version]
- Komsa, H.-P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 035503. [Google Scholar] [CrossRef] [PubMed]
- Zan, R.; Ramasse, Q.M.; Jalil, R.; Georgiou, T.; Bangert, U.; Novoselov, K.S. Control of Radiation Damage in MoS2 by Graphene Encapsulation. ACS Nano 2013, 7, 10167–10174. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.-Y.; Jiang, S.-D.; Tang, M.-J.; Li, K.; Sun, S.; Chen, P.-Y.; Zhang, S. MoS2 Membranes for Organic Solvent Nanofiltration: Stability and Structural Control. J. Phys. Chem. Lett. 2019, 10, 4609–4617. [Google Scholar] [CrossRef]
- Sapkota, B.; Liang, W.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 11, 2747. [Google Scholar] [CrossRef]
- Hoenig, E.; Strong, S.E.; Wang, M.; Radhakrishnan, J.M.; Zaluzec, N.J.; Skinner, J.L.; Liu, C. Controlling the Structure of MoS2 Membranes via Covalent Functionalization with Molecular Spacers. Nano Lett. 2020, 20, 7844–7851. [Google Scholar] [CrossRef]
- Chithaiah, P.; Ghosh, S.; Idelevich, A.; Rovinsky, L.; Livneh, T.; Zak, A. Solving the “MoS2 Nanotubes” Synthetic Enigma and Elucidating the Route for Their Catalyst-Free and Scalable Production. ACS Nano 2020, 14, 3004–3016. [Google Scholar] [CrossRef]
- Chenoweth, K.; van Duin, A.C.T.; Goddard, W.A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktulga, H.M.; Fogarty, J.C.; Pandit, S.A.; Grama, A.Y. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques. Parallel Comput. 2012, 38, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Lauritsen, J.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B.S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Pollock, E.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 1996, 95, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ostadhossein, A.; Rahnamoun, A.; Wang, Y.; Zhao, P.; Zhang, S.; Crespi, V.H.; van Duin, A.C.T. ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2). J. Phys. Chem. Lett. 2017, 8, 631–640. [Google Scholar] [CrossRef]
- Tsafack, T.; Bartolucci, S.F.; Maurer, J.A. Elucidation of Molybdenum Trioxide Sulfurization: Mechanistic Insights into Two-Dimensional Molybdenum Disulfide Growth. J. Phys. Chem. A 2021, 125, 1809–1815. [Google Scholar] [CrossRef]
- Chen, R.; Konicek, A.R.; Jusufi, A.; Kliewer, C.E.; Jaishankar, A.; Schilowitz, A.; Martini, A. Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen. J. Phys. Chem. C 2020, 124, 27571–27579. [Google Scholar] [CrossRef]
- Noori, H.; Mortazavi, B.; Keshtkari, L.; Zhuang, X.; Rabczuk, T. Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: A reactive molecular dynamics study. Appl. Phys. A 2021, 127, 541. [Google Scholar] [CrossRef]
- Zakharov, I.I.; Voroshina, O.V.; Startsev, A.N. The molecular and electronic structure of the Mo12S24 macromolecule as a model of the active component of a hydrodesulfurization catalyst. Russ. J. Phys. Chem. A 2006, 80, 1083–1087. [Google Scholar] [CrossRef]
- Ni, B.; Wang, X. Face the Edges: Catalytic Active Sites of Nanomaterials. Adv. Sci. 2015, 2, 1500085. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.S.; Weinkam, P.; Wolynes, P.G. Origins of barriers and barrierless folding in BBL. Proc. Natl. Acad. Sci. USA 2008, 105, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Mira, M.M.; Sadqi, M.; Fischer, N.; Sanchez-Ruiz, J.M.; Munoz, V. Experimental Identification of Downhill Protein Folding. Science 2002, 298, 2191–2195. [Google Scholar] [CrossRef] [Green Version]
- Gao, N.; Guo, Y.; Zhou, S.; Bai, Y.; Zhao, J. Structures and Magnetic Properties of MoS2 Grain Boundaries with Antisite Defects. J. Phys. Chem. C 2017, 121, 12261–12269. [Google Scholar] [CrossRef]
- Lobos, S.; Sierraalta, A.; Ruette, F.; Rodríguez-Arias, E.N. Modeling MoS2 catalytic surface with simple clusters. J. Mol. Catal. A Chem. 2003, 192, 203–216. [Google Scholar] [CrossRef]
- Mortazavi, B.; Ostadhossein, A.; Rabczuk, T.; van Duin, A.C.T. Mechanical response of all-MoS2 single-layer heterostructures: A ReaxFF investigation. Phys. Chem. Chem. Phys. 2016, 18, 23695–23701. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.L.; Douglas, J.F. Reducing uncertainty in simulation estimates of the surface tension through a two-scale finite-size analysis: Thicker is better. RSC Adv. 2019, 9, 35803–35812. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.L.; Douglas, J.F. Influence of film thickness on the stability of free-standing Lennard-Jones fluid films. J. Chem. Phys. 2019, 150, 144705. [Google Scholar] [CrossRef]
- González-Mijangos, J.A.; Lima, E.; Guerra-González, R.; Ramírez-Zavaleta, F.I.; Rivera, J.L. Critical Thickness of Free-Standing Nanothin Films Made of Melted Polyethylene Chains via Molecular Dynamics. Polymers 2021, 13, 3515. [Google Scholar] [CrossRef]
- Pandey, A.; Dutta, S.; Kumar, A.; Raman, R.; Kapoor, A.K.; Muralidhran, R. Structural And Optical Properties Of Bulk MoS2 For 2D Layer Growth. Adv. Mater. Lett. 2016, 7, 777–782. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Dumcenco, D.O.; Huang, Y.-S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Chen, W.; Ophus, C.; Ciston, J.; Lin, Y.; Persson, K.; Zettl, A. Identifying different stacking sequences in few-layer CVD-grown MoS2 by low-energy atomic-resolution scanning transmission electron microscopy. Phys. Rev. B 2016, 93, 041420. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.H.; Lee, J.; Kim, N.Y.; Lee, Y.; Kim, Y.; Kim, M.J.; Lee, C.; Lee, Z. Line-defect mediated formation of hole and Mo clusters in monolayer molybdenum disulfide. 2D Mater. 2016, 3, 014002. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Sawada, H.; Allen, C.S.; Kirkland, A.I.; Grossman, J.C.; Warner, J.H. Atomic structure and formation mechanism of sub-nanometer pores in 2D monolayer MoS2. Nanoscale 2017, 9, 6417–6426. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K.I.; Cuong, N.T.; Otani, M.; Okada, S.; Lupini, A.R.; et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 2014, 9, 436–442. [Google Scholar] [CrossRef]
- Nayak, A.P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C.; Singh, A.; Akinwande, D.; Lin, J.-F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Li, H.; Yuan, J.; Xia, Y.; Liu, Y.; Sun, A. Recent Advance and Modification Strategies of Transition Metal Dichalcogenides (TMDs) in Aqueous Zinc Ion Batteries. Materials 2022, 15, 2654. [Google Scholar] [CrossRef]
- Liu, J.; Xu, P.; Liang, J.; Liu, H.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chem. Eng. J. 2020, 389, 124405. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Obeso, P.J.; Huirache-Acuña, R.; Ramirez-Zavaleta, F.I.; Rivera, J.L. Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes. Membranes 2022, 12, 818. https://doi.org/10.3390/membranes12080818
Peña-Obeso PJ, Huirache-Acuña R, Ramirez-Zavaleta FI, Rivera JL. Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes. Membranes. 2022; 12(8):818. https://doi.org/10.3390/membranes12080818
Chicago/Turabian StylePeña-Obeso, Pablo Jahir, Rafael Huirache-Acuña, Fernando Iguazú Ramirez-Zavaleta, and José Luis Rivera. 2022. "Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes" Membranes 12, no. 8: 818. https://doi.org/10.3390/membranes12080818
APA StylePeña-Obeso, P. J., Huirache-Acuña, R., Ramirez-Zavaleta, F. I., & Rivera, J. L. (2022). Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS2 Nanotubes. Membranes, 12(8), 818. https://doi.org/10.3390/membranes12080818