Dual Crosslinked Ion-Based Bacterial Cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrogels Containing BC
2.3. Hydrogel Containing BC Characterizations
2.3.1. Morphological Characterizations
2.3.2. Thickness and diameter
2.3.3. Mechanical Strength Test
2.3.4. Fluid Uptake Ability
2.3.5. Water Retention Property
2.3.6. Integrity Value
2.3.7. Swelling Ratio
2.4. Fourier-Transform Infrared Spectroscopy
2.5. PHMB Loading Content
2.6. In Vitro Drug Release Profile
2.7. Antimicrobial Test
2.8. Cell Culture
2.9. Cell Viability Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Morphological Characterization of Hydrogel Containing BC
3.2. Mechanical Properties of Hydrogels Containing BC
3.3. Fluid Uptake Ability, Water Retention Property, Maximum Swelling Degree, and Integrity Value of Hydrogels Containing BC
3.4. Fourier Transform Infrared Spectroscopy
3.5. Drug Content
3.6. PHMB Release Profile
3.7. Antimicrobial Activity
3.8. Cell Viability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosny, K.M.; Alkhalidi, H.M.; Alharbi, W.S.; Md, S.; Sindi, A.M.; Ali, S.A.; Bakhaidar, R.B.; Almehmady, A.M.; Alfayez, E.; Kurakula, M. Recent trends in assessment of cellulose derivatives in designing novel and nanoparticulate-based drug delivery systems for improvement of oral health. Polymers 2022, 14, 92. [Google Scholar] [CrossRef]
- Wasilewska, K.; Winnicka, K. Ethylcellulose—A pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials 2019, 12, 3386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Gorgieva, S.; Trček, J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, C.; Moritz, S.; Hessler, N.; Kralisch, D.; Wesarg, F.; Müller, F.A.; Fischer, D.; Hipler, U.-C. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med. 2015, 26, 245. [Google Scholar] [CrossRef]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings-a review. Biomedicine 2015, 5, 22. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V. Cross-linking in hydrogels-a review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 2017, 79, 958–971. [Google Scholar] [CrossRef]
- Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern wound dressings: Hydrogel dressings. Biomedicines 2021, 9, 1235. [Google Scholar] [CrossRef]
- Kus, K.J.B.; Ruiz, E.S. Wound dressings–a practical review. Curr. Dermatol. Rep. 2020, 9, 298–308. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv. Pharm. Bull. 2017, 7, 515–530. [Google Scholar] [CrossRef]
- O-chongpian, P.; Na Takuathung, M.; Chittasupho, C.; Ruksiriwanich, W.; Chaiwarit, T.; Baipaywad, P.; Jantrawut, P. Composite nanocellulose fibers-based hydrogels loading clindamycin HCl with Ca2+ and citric acid as crosslinking agents for pharmaceutical applications. Polymers 2021, 13, 4423. [Google Scholar] [CrossRef] [PubMed]
- Koburger, T.; Hübner, N.O.; Braun, M.; Siebert, J.; Kramer, A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J. Antimicrob. Chemother. 2010, 65, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.; Zhang, M.; Luo, H.; Niu, L.; Feng, Y.; Li, M. Porous poly(hexamethylene biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function. Materials 2020, 13, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chindera, K.; Mahato, M.; Sharma, A.K.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N.F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T.; et al. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 2016, 6, 23121. [Google Scholar] [CrossRef]
- Rembe, J.D.; Fromm-Dornieden, C.; Schäfer, N.; Böhm, J.K.; Stuermer, E.K. Comparing two polymeric biguanides: Chemical distinction, antiseptic efficacy and cytotoxicity of polyaminopropyl biguanide and polyhexamethylene biguanide. J. Med. Microbiol. 2016, 65, 867–876. [Google Scholar] [CrossRef]
- Worsley, A.; Vassileva, K.; Tsui, J.; Song, W.; Good, L. Polyhexamethylene biguanide:polyurethane blend nanofibrous membranes for wound infection control. Polymers 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, D.; Ma, L.Z. Effect of polyhexamethylene biguanide in combination with undecylenamidopropyl betaine or PslG on biofilm clearance. Int. J. Mol. Sci. 2021, 22, 768. [Google Scholar] [CrossRef]
- Chanabodeechalermrung, B.; Chaiwarit, T.; Jantrawut, P. Development of hydrogel containing bacterial cellulose and pectin or alginate for wound dressing applications. Thai J. Pharm. Sci. 2022, 17, 23–36. [Google Scholar]
- Shahriari-Khalaji, M.; Hong, S.; Hu, G.; Ji, Y.; Hong, F.F. Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing. Polymers 2020, 12, 2683. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhang, F.; Zhu, L.; Jiang, J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int. J. Biol. Macromol. 2021, 170, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, P.; Martinez-Sanz, M.; Bonilla, M.R.; Wang, D.; Gilbert, E.P.; Stokes, J.R.; Gidley, M.J. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydr. Polym. 2017, 162, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Azam, N.; Mat Amin, K.A. Sodium alginate film: The effect of crosslinker on physical and mechanical properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012063. [Google Scholar] [CrossRef]
- Sowlati-Hashjin, S.; Carbone, P.; Karttunen, M. Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A molecular dynamics study. J. Phys. Chem. B 2020, 124, 4487–4497. [Google Scholar] [CrossRef]
- Sultana, N.; Khan, T.H. Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly(hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films. J. Nanomater. 2013, 2013, 479109. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, X.; Wen, Y.; Li, D.; Sun, X.; Liu, Z.; Yan, H.; Lin, Q. A Study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers 2022, 14, 1679. [Google Scholar] [CrossRef]
- Jantrawut, P.; Bunrueangtha, J.; Suerthong, J.; Kantrong, N. Fabrication and characterization of low methoxyl pectin/gelatin/carboxymethyl cellulose absorbent hydrogel film for wound dressing applications. Materials 2019, 12, 1628. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Liu, M.; Chen, J.; Zhang, X. Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym. Degrad. Stab. 2009, 94, 1405–1410. [Google Scholar] [CrossRef]
- Oleg, V.O.; Anna, V.E.; Tamara, S.K.; Mikhail, S.S.; Vladimir, Y.K.; Oksana, V.E. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 2016, 86, 181–189. [Google Scholar]
- Canteri, M.H.G.; Renard, C.M.G.C.; Le Bourvellec, C.; Bureau, S. ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.; Romanos, G.E.; Katsaros, F. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Rigoni, D.; Canteri, M.; Petkowicz, C.; Nogueira, A.; Wosiacki, G. Chemical and instrumental characterization of pectin from dried pomace of eleven apple cultivars. Acta Sci. Agron. 2011, 33, 383–389. [Google Scholar]
- Mishra, R.K.; Datt, M.; Pal, K.; Banthia, A.K. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J. Mater. Sci. Mater. Med. 2008, 19, 2275–2280. [Google Scholar] [CrossRef]
- Babac, C.; Kutsal, T.; Pişkin, E. Production and characterization of biodegradable bacterial cellulose membranes. Int. J. Eng. Sci. 2009, 3, 19–22. [Google Scholar]
- Ahani, E.; Montazer, M.; Toliyat, T.; Mahmoudi Rad, M. A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride). J. Bioact. Compat. Polym. 2017, 32, 242–262. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Królicka, E.; Malina, D. Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(vinyl alcohol) hydrogels. Molecules 2021, 26, 2381. [Google Scholar] [CrossRef]
- Dilamian, M.; Montazer, M.; Masoumi, J. Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr. Polym. 2013, 94, 364–371. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Ahmed, L.; Atif, R.; Eldeen, T.; Yahya, I.; Omara, A.; Eltayeb, M. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. Int. J. Eng. Technol. 2019, 8, 52–56. [Google Scholar]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Mario, G.; Gabriele, G. Mathematical Modelling and Controlled Drug Delivery: Matrix Systems. Curr. Drug Deliv. 2005, 2, 97–116. [Google Scholar]
Sample Code | Polymer Composition | Crosslinking Agent | Drug | |||
---|---|---|---|---|---|---|
2% w/v BC | 0.5% w/v A | 5% w/v P | 0.5% w/v A + 0.5% w/v P | Ca2+ | PHMB | |
BC/A | + | + | − | − | + | − |
BC/P | + | − | + | − | + | − |
BC/A/P | + | − | − | + | + | − |
BC/A-PHMB | + | + | − | − | + | + |
BC/P-PHMB | + | − | + | − | + | + |
BC/A/P-PHMB | + | − | − | + | + | + |
Formulation | Thickness (mm) | Diameter (mm) | Puncture Strength (N/mm2) |
---|---|---|---|
BC/A | 3.55 ± 0.18 a | 31.28 ± 0.15 a | 3.18 ± 0.12 a |
BC/P | 4.65 ± 0.09 b | 47.74 ± 0.29 b | 1.75 ± 0.10 b |
BC/A/P | 4.16 ± 0.21 c | 35.16 ± 0.74 c | 2.51 ± 0.08 c |
BC/A-PHMB | 3.21 ± 0.10 d | 26.32 ± 0.02 d | 3.52 ± 0.16 d |
BC/P-PHMB | 4.38 ± 0.07 c | 47.03 ± 0.78 b | 2.15 ± 0.15 e |
BC/A/P-PHMB | 3.41 ± 0.29 a,d | 26.68 ± 0.19 d | 4.50 ± 0.22 f |
Formulation | Integrity Value (%) | Maximum Swelling Degree (%) |
---|---|---|
BC/A | 0 | ND |
BC/P | 31 ± 0.50 a | 309 ± 6.78 a |
BC/A/P | 0 | ND |
BC/A-PHMB | 55 ± 0.80 b | 407 ± 25.87 b |
BC/P-PHMB | 49 ± 0.82 c | 348 ± 11.97 c |
BC/A/P-PHMB | 50 ± 1.06 c | 353 ± 25.12 c |
Formulation | Drug Content (%) |
---|---|
BC/A-PHMB | 101.97 ± 6.95 a |
BC/P-PHMB | 98.10 ± 5.24 a |
BC/A/P-PHMB | 98.08 ± 4.14 a |
Kinetic Models | Parameter | Buffer | |
---|---|---|---|
PBS | Tris-HCl | ||
Zero-order | R2 | 0.8947 | 0.9645 |
K0 (h−1) | 15.8502 | 13.5530 | |
First-order | R2 | 0.8885 | 0.9011 |
K1 (h−1) | 0.2101 | 2.7454 | |
Higuchi | R2 | 0.9845 | 0.9979 |
KH (h1/2) | 61.4814 | 33.8163 | |
Korsmeyer-Peppas | R2 | 0.9648 | 0.9981 |
K (h−n) | 70.8349 | 31.8966 | |
n | 0.5906 | 0.5613 |
Sample | Diameter of Inhibition Zone (mm) | |
---|---|---|
S. aureus | P. aeruginosa | |
BC/A | ND | ND |
20% PHMB | 16.00 ± 0.22 a | 14.49 ± 0.48 a |
BC/A-PHMB | 14.28 ± 0.31 b | 20.55 ± 1.53 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanabodeechalermrung, B.; Chaiwarit, T.; Sommano, S.R.; Rachtanapun, P.; Kantrong, N.; Chittasupho, C.; Jantrawut, P. Dual Crosslinked Ion-Based Bacterial Cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide. Membranes 2022, 12, 825. https://doi.org/10.3390/membranes12090825
Chanabodeechalermrung B, Chaiwarit T, Sommano SR, Rachtanapun P, Kantrong N, Chittasupho C, Jantrawut P. Dual Crosslinked Ion-Based Bacterial Cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide. Membranes. 2022; 12(9):825. https://doi.org/10.3390/membranes12090825
Chicago/Turabian StyleChanabodeechalermrung, Baramee, Tanpong Chaiwarit, Sarana Rose Sommano, Pornchai Rachtanapun, Nutthapong Kantrong, Chuda Chittasupho, and Pensak Jantrawut. 2022. "Dual Crosslinked Ion-Based Bacterial Cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide" Membranes 12, no. 9: 825. https://doi.org/10.3390/membranes12090825
APA StyleChanabodeechalermrung, B., Chaiwarit, T., Sommano, S. R., Rachtanapun, P., Kantrong, N., Chittasupho, C., & Jantrawut, P. (2022). Dual Crosslinked Ion-Based Bacterial Cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide. Membranes, 12(9), 825. https://doi.org/10.3390/membranes12090825