Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Production of TiO2/PVDF-TrFE Nanocomposite Membranes
2.3. Nanocomposite Membranes Characterization
2.4. Photocatalytic Degradations of Niflumic Acid
3. Artificial Neural Network
4. Results and Discussion
4.1. Nanocomposites Characterization
4.2. Photocatalytic Degradation of Niflumic Acid
4.2.1. Effect of the Initial Concentration of Niflumic Acid
4.2.2. Effect of pH of the Media
4.2.3. Effect of Irradiation Source and Radiation Intensity
4.3. Reusability of the Nanocomposite Membranes
4.4. Mineralization and Degradation Pathways
4.5. Artificial Neural Network Modeling Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P.M.; Lanceros-Mendez, S. Reusable Ag@TiO2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers 2021, 13, 3718. [Google Scholar] [CrossRef] [PubMed]
- Benosmane, S.; Bendjelloul, M.; Elandaloussi, E.H.; Touhami, M.; de Ménorval, L.-C. Experimental and modeling study on adsorption of emerging contaminants onto hyper-crosslinked cellulose. Chem. Pap. 2021, 75, 4021–4034. [Google Scholar] [CrossRef]
- Madjene, F.; Yeddou-Mezenner, N. Design and optimization of a new photocatalytic reactor with immobilized ZnO for water purification. Sep. Sci. Technol. 2018, 53, 364–373. [Google Scholar] [CrossRef]
- Dubey, A.T.a.A. Defluoridation of Drinking Water: Efficacy and Need. J. Chem. Pharm. Res. 2009, 1, 31–37. [Google Scholar]
- Mila, E.; Nika, M.-C.; Thomaidis, N.S. Identification of first and second generation ozonation transformation products of niflumic acid by LC-QToF-MS. J. Hazard. Mater. 2019, 365, 804–812. [Google Scholar] [CrossRef]
- Sun, S.; Xiao, Q.R.; Zhou, X.; Wei, Y.Y.; Shi, L.; Jiang, Y. A bio-based environment-friendly membrane with facile preparation process for oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 18–22. [Google Scholar] [CrossRef]
- Stack, L.J.; Carney, P.A.; Malone, H.B.; Wessels, T.K. Factors influencing the ultrasonic separation of oil-in-water emulsions. Ultrason. Sonochem. 2005, 12, 153–160. [Google Scholar] [CrossRef]
- Soares, S.F.; Rodrigues, M.I.; Trindade, T.; Daniel-da-Silva, A.L. Chitosan-silica hybrid nanosorbents for oil removal from water. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 305–313. [Google Scholar] [CrossRef]
- Cañizares, P.; Martínez, F.; Jiménez, C.; Sáez, C.; Rodrigo, M.A. Coagulation and electrocoagulation of oil-in-water emulsions. J. Hazard. Mater. 2008, 151, 44–51. [Google Scholar] [CrossRef]
- Tokumura, M.; Sugawara, A.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere 2016, 159, 317–325. [Google Scholar] [CrossRef]
- Martins, P.M.; Salazar, H.; Aoudjit, L.; Gonçalves, R.; Zioui, D.; Fidalgo-Marijuan, A.; Costa, C.M.; Ferdov, S.; Lanceros-Mendez, S. Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole. Chemosphere 2021, 262, 128300. [Google Scholar] [CrossRef] [PubMed]
- Salazar, H.; Martins, P.M.; Santos, B.; Fernandes, M.M.; Reizabal, A.; Sebastián, V.; Botelho, G.; Tavares, C.J.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere 2020, 250, 126299. [Google Scholar] [CrossRef]
- Aoudjit, L.; Martins, P.M.; Madjene, F.; Petrovykh, D.Y.; Lanceros-Mendez, S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J. Hazard. Mater. 2018, 344, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Zioui, D.; Salazar, H.; Aoudjit, L.; Martins, P.M.; Lanceros-Méndez, S. Polymer-Based Membranes for Oily Wastewater Remediation. Polymers 2020, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Salazar, H.; Nunes-Pereira, J.; Correia, D.M.; Cardoso, V.F.; Gonçalves, R.; Martins, P.M.; Ferdov, S.; Martins, M.D.; Botelho, G.; Lanceros-Méndez, S. Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water. Mater. Chem. Phys. 2016, 183, 430–438. [Google Scholar] [CrossRef]
- Song, H.; Shao, J.; Wang, J.; Zhong, X. The removal of natural organic matter with LiCl–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Desalination 2014, 344, 412–421. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Cheng, L.-H.; Xu, K.; Xu, Q.-P.; Chen, H.-L.; Lai, J.-Y.; Tung, K.-L. Extracorporeal endotoxin removal by novel l-serine grafted PVDF membrane modules. J. Membr. Sci. 2012, 405–406, 104–112. [Google Scholar] [CrossRef]
- Ramaiah, K.P.; Satyasri, D.; Sridhar, S.; Krishnaiah, A. Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers. J. Hazard. Mater. 2013, 261, 362–371. [Google Scholar] [CrossRef]
- Zuo, X.; Shi, W.; Tian, Z.; Yu, S.; Wang, S.; He, J. Desalination of water with a high degree of mineralization using SiO2/PVDF membranes. Desalination 2013, 311, 150–155. [Google Scholar] [CrossRef]
- Martins, P.; Miranda, R.; Marques, J.; Tavares, C.; Botelho, G.; Lanceros-Méndez, S. Comparative Efficiency of TiO2 Nanoparticles in Suspension vs. Immobilization into P(VDF-TrFE) Porous Membranes. RSC Adv. 2016, 6, 12708–12716. [Google Scholar] [CrossRef]
- Salazar, H.; Lima, A.C.; Lopes, A.C.; Botelho, G.; Lanceros-Mendez, S. Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 93–99. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Luo, J.; Jaffrin, M.Y.; Tang, B. Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review. Chem. Eng. J. 2016, 302, 446–458. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Todaro, F.; Notarnicola, M.; Bortone, I. A review of the in-situ capping amendments and modeling approaches for the remediation of contaminated marine sediments. Sci. Total Environ. 2021, 806, 151257. [Google Scholar] [CrossRef] [PubMed]
- Taoufik, N.; Boumya, W.; Achak, M.; Chennouk, H.; Dewil, R.; Barka, N. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. Sci. Total Environ. 2021, 807, 150554. [Google Scholar] [CrossRef] [PubMed]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Bui, H.-B.; Bui, X.-N. Rapid Determination of Gross Calorific Value of Coal Using Artificial Neural Network and Particle Swarm Optimization. Nat. Resour. Res. 2021, 30, 621–638. [Google Scholar] [CrossRef]
- De Souza, C.P.G.; Kurka, P.R.G.; Lins, R.G.; de Araújo, J.M. Performance comparison of non-adaptive and adaptive optimization algorithms for artificial neural network training applied to damage diagnosis in civil structures. Appl. Soft Comput. 2021, 104, 107254. [Google Scholar] [CrossRef]
- Mansour, M.Y.; Dicleli, M.; Lee, J.Y.; Zhang, J. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng. Struct. 2004, 26, 781–799. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Avand, M.; Thuy Linh, N.T.; Vojtek, M.; Vojteková, J.; Lee, S.; Khoi, D.N.; Thao Nhi, P.T.; Dung, T.D. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. J. Environ. Manag. 2020, 265, 110485. [Google Scholar] [CrossRef]
- Kakkar, S.; Kwapinski, W.; Howard, C.A.; Kumar, K.V. Deep neural networks in chemical engineering classrooms to accurately model adsorption equilibrium data. Educ. Chem. Eng. 2021, 36, 115–127. [Google Scholar] [CrossRef]
- Khataee, A.R.; Kasiri, M.B. Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. J. Mol. Catal. A Chem. 2010, 331, 86–100. [Google Scholar] [CrossRef]
- Zheng, X.; Nguyen, H. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere 2022, 287, 132251. [Google Scholar] [CrossRef] [PubMed]
- Giwa, A.; Daer, S.; Ahmed, I.; Marpu, P.R.; Hasan, S.W. Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment. J. Water Process Eng. 2016, 11, 88–97. [Google Scholar] [CrossRef]
- Rasoulifard, M.H.; Seyed Dorraji, M.S.; Amani-Ghadim, A.R.; Keshavarz-babaeinezhad, N. Visible-light photocatalytic activity of chitosan/polyaniline/CdS nanocomposite: Kinetic studies and artificial neural network modeling. Appl. Catal. A Gen. 2016, 514, 60–70. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681. [Google Scholar] [CrossRef] [PubMed]
- Zielenkiewicz, W.; Terekhova, I.V.; Koźbiał, M.; Wszelaka-Rylik, M.; Kumeev, R.S. Complexation of niflumic acid with native and hydroxypropylated α- and β-cyclodextrins in aqueous solution. J. Phys. Org. Chem. 2008, 21, 859–866. [Google Scholar] [CrossRef]
- Lee, H.W.; Won, K.J.; Cho, S.H.; Ha, Y.H.; Park, W.S.; Yim, H.T.; Baek, M.; Rew, J.H.; Yoon, S.H.; Yim, S.V.; et al. Quantitation of niflumic acid in human plasma by high-performance liquid chromatography with ultraviolet absorbance detection and its application to a bioequivalence study of talniflumate tablets. J. Chromatogr. B 2005, 821, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.M.; Alam, F.; Akter, M.M.; Gilroyed, B.H.; Didar-ul-Alam, M.; Tijing, L.; Shon, H.K. Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater. Chemosphere 2022, 304, 135293. [Google Scholar] [CrossRef]
- Naghikhani, A.; Jodeiri, A.; Karbassi, A.; Baghdadi, M.; Sarang, A.; Buchali Safiee, A.H. Investigating the artificial intelligence methods for determining performance of the NZVI permeable reactive barriers. Groundw. Sustain. Dev. 2021, 12, 100516. [Google Scholar] [CrossRef]
- Jin, Z.; Duan, W.; Liu, B.; Chen, X.; Yang, F.; Guo, J. Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue. Appl. Surf. Sci. 2015, 356, 707–718. [Google Scholar] [CrossRef]
- Carrales-Alvarado, D.H.; Ocampo-Pérez, R.; Leyva-Ramos, R.; Rivera-Utrilla, J. Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase. J. Colloid Interface Sci. 2014, 436, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Takács-Novák, K.; Szőke, V.; Völgyi, G.; Horváth, P.; Ambrus, R.; Szabó-Révész, P. Biorelevant solubility of poorly soluble drugs: Rivaroxaban, furosemide, papaverine and niflumic acid. J. Pharm. Biomed. Anal. 2013, 83, 279–285. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Huang, Y.; Jia, Y.; Chen, L. Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. Chem. Eng. J. 2022, 428, 131257. [Google Scholar] [CrossRef]
- Li, Q.; Feng, X.; Zhang, X.; Song, H.; Zhang, J.; Shang, J.; Sun, W.; Zhu, T.; Wakamura, M.; Tsukada, M.; et al. Photocatalytic degradation of bisphenol A using Ti-substituted hydroxyapatite. Chin. J. Catal. 2014, 35, 90–98. [Google Scholar] [CrossRef]
- Gurkan, Y.Y.; Kasapbasi, E.; Cinar, Z. Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chem. Eng. J. 2013, 214, 34–44. [Google Scholar] [CrossRef]
- Teixeira, S.; Martins, P.M.; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl. Surf. Sci. 2016, 384, 497–504. [Google Scholar] [CrossRef]
- Rafqah, S.; Sarakha, M. Photochemical transformation of flufenamic acid by artificial sunlight in aqueous solutions. J. Photochem. Photobiol. A Chem. 2016, 316, 1–6. [Google Scholar] [CrossRef]
- Huber, M.M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef]
- Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 2004, 178, 389–397. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H.; Gandomi, M.; Sadat Hosseini, S.S. Prediction of maximum dry density and optimum moisture content of stabilised soil using RBF neural networks. IES J. Part A Civ. Struct. Eng. 2009, 2, 98–106. [Google Scholar] [CrossRef]
Statistical Parameters | Value |
---|---|
R2 | 0.98 |
RMSE | 0.013 |
MAE | 0.020 |
MAPE | 0.079 |
Input Variable | Relative Relevance (%) | Rank |
---|---|---|
Initial NFA concentration (mg/L) | 18.2 | 4 |
Initial pH | 25.7 | 2 |
Irradiation time (h) | 33.4 | 1 |
Solar irradiation intensity (W/m2) | 22.7 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P.M.; Lanceros-Méndez, S. Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation. Membranes 2022, 12, 849. https://doi.org/10.3390/membranes12090849
Aoudjit L, Salazar H, Zioui D, Sebti A, Martins PM, Lanceros-Méndez S. Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation. Membranes. 2022; 12(9):849. https://doi.org/10.3390/membranes12090849
Chicago/Turabian StyleAoudjit, Lamine, Hugo Salazar, Djamila Zioui, Aicha Sebti, Pedro Manuel Martins, and Senentxu Lanceros-Méndez. 2022. "Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation" Membranes 12, no. 9: 849. https://doi.org/10.3390/membranes12090849
APA StyleAoudjit, L., Salazar, H., Zioui, D., Sebti, A., Martins, P. M., & Lanceros-Méndez, S. (2022). Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation. Membranes, 12(9), 849. https://doi.org/10.3390/membranes12090849