The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation of BPDA-P3 Structural Ordering
2.2. BPDA-P3 Transport Properties
2.3. Transport and Structural Properties Calculations
3. Results and Discussion
3.1. Structure Ordering of BPDA-P3 Chains
3.2. Transport Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Ube Industries Ltd. Ube Increases Membrane Production. Membr. Technol. 2006, 2006, 4–5. [Google Scholar] [CrossRef]
- UBE Corporation. Available online: https://www.ube.com/contents/en/chemical/separation/index.html (accessed on 10 July 2022).
- Air Liquid’s Newsletter “Membrane Solutions for Natural Gas Treatment”. Available online: https://www.airliquideadvancedseparations.com/membrane-solutions-natural-gas-treatment (accessed on 10 July 2022).
- Simmons, J.W.; Kulkarni, S.; Ekiner, O.M. Method for Separating Hydrocarbon-Containing Gas Mixtures Using Hydrocarbon-Resistant Membranes. U.S. Patent US007025804B2, 11 April 2006. [Google Scholar]
- GRASIS. Available online: https://www.grasys.com/products/gas/hydrocarbon/ (accessed on 10 July 2022).
- Chen, X.Y.; Tien-Binh, N.; Kaliaguine, S.; Rodrigue, D. Polyimide Membranes for Gas Separation: Synthesis, Processing and Properties; Murphy, C., Ed.; Nova Science Publishers: New York, NY, USA, 2016; ISBN 9781536106237. [Google Scholar]
- Yampolski, Y.; Pinnau, I.; Freeman, B. Materials Science of Membranes for Gas and Vapor Separation; Yampolski, Y., Pinnau, I., Freeman, B., Eds.; John Wiley & Sons: Chichester, UK, 2006; ISBN 047085345X. [Google Scholar]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Chen, X.Y.; Vinh-Thang, H.; Ramirez, A.A.; Rodrigue, D.; Kaliaguine, S. Membrane Gas Separation Technologies for Biogas Upgrading. RSC Adv. 2015, 5, 24399–24448. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Mittal, K.L. Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Volume 4; Mittal, K.L., Ed.; CRC Press, Taylor & Francis Group: Boston, MA, USA, 2007; ISBN 9783540773405. [Google Scholar]
- Mittal, K.L. Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Volume 5; Mittal, K.L., Ed.; CRC Press, Taylor & Francis Group: Boston, MA, USA, 2009; ISBN 9780429087745. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications; Baker, R.W., Ed.; Wiley: Newark, DE, USA, 2012; ISBN 9780470743720. [Google Scholar]
- Malay, K.; Ghosh, K.L.M. Polyimides: Fundamentals and Applications; Marcel Dekke: New York, NY, USA, 1996; ISBN 0-8247-9466-4. [Google Scholar]
- Bessonov, M.I.; Koton, M.M.; Kudryavtsev, V.V.; Laius, L.A. Polyimides-Thermally Stable Polymers; Springer: New York, NY, USA, 1987; ISBN 978-1-4615-7636-5. [Google Scholar]
- Ismail, A.F.; Chandra Khulbe, K.; Matsuura, T. Gas Separation Membranes; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-01094-6. [Google Scholar]
- Chatterjee, R.; Bisoi, S.; Kumar, A.G.; Padmanabhan, V.; Banerjee, S. Polyimides Containing Phosphaphenanthrene Skeleton: Gas-Transport Properties and Molecular Dynamics Simulations. ACS Omega 2018, 3, 13510–13523. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer: Dordrecht, The Netherlands, 1991; ISBN 0792309782. [Google Scholar]
- Galizia, M.; Daniel, C.; Fasano, G.; Guerra, G.; Mensitieri, G. Gas Sorption and Diffusion in Amorphous and Semicrystalline Nanoporous Poly (2,6-Dimethyl-1,4-Phenylene) Oxide. Macromolecules 2012, 45, 3604–3615. [Google Scholar] [CrossRef]
- Bitter, J.G.A. Effect of Crystallinity and Swelling on the Permeability and Selectivity of Polymer Membranes. Desalination 1984, 51, 19–35. [Google Scholar] [CrossRef]
- Larobina, D.; Sanguigno, L.; Venditto, V.; Guerra, G.; Mensitieri, G. Gas Sorption and Transport in Syndiotactic Polystyrene with Nanoporous Crystalline Phase. Polymer 2004, 45, 429–436. [Google Scholar] [CrossRef]
- Markova, S.Y.; Gries, T.; Teplyakov, V.V. Poly(4-Methyl-1-Pentene) as a Semicrystalline Polymeric Matrix for Gas Separating Membranes. J. Membr. Sci. 2020, 598, 117754. [Google Scholar] [CrossRef]
- Puleo, A.C.; Paul, D.R.; Wong, P.K. Gas Sorption and Transport in Semicrystalline Poly (4-Methyl-1-Pentene). Polymer 1989, 30, 1357–1366. [Google Scholar] [CrossRef]
- Hegde, M.; Lafont, U.; Norder, B.; Samulski, E.T.; Rubinstein, M.; Dingemans, T.J. SWCNT Induced Crystallization in Amorphous and Semi-Crystalline Poly (Etherimide) s: Morphology and Thermo-Mechanical Properties. Polymer 2014, 55, 3746–3757. [Google Scholar] [CrossRef]
- Larin, S.V.; Nazarychev, V.M.; Dobrovskiy, A.Y.; Lyulin, A.V.; Lyulin, S.V. Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties. Polymers 2018, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
- Falkovich, S.G.; Nazarychev, V.M.; Larin, S.V.; Kenny, J.M.; Lyulin, S.V. Mechanical Properties of a Polymer at the Interface Structurally Ordered by Graphene. J. Phys. Chem. C 2016, 120, 6771–6777. [Google Scholar] [CrossRef]
- Dingemans, T.J.; Mendes, E.; Hinkley, J.J.; Weiser, E.S.; StClair, T.L. Poly (Ether Imide) s from Diamines with Para-, Meta-, and Ortho-Arylene Substitutions: Synthesis, Characterization, and Liquid Crystalline Properties. Macromolecules 2008, 41, 2474–2483. [Google Scholar] [CrossRef]
- Yudin, V.E.; Feldman, A.Y.; Svetlichnyi, V.M.; Shumakov, A.N.; Marom, G. Crystallization of R-BAPB Type Polyimide Modified by Carbon Nano-Particles. Compos. Sci. Technol. 2007, 67, 789–794. [Google Scholar] [CrossRef]
- Yudin, V.E.; Svetlichnyi, V.M. Effect of the Structure and Shape of Filler Nanoparticles on the Physical Properties of Polyimide Composites. Russ. J. Gen. Chem. 2010, 80, 2157–2169. [Google Scholar] [CrossRef]
- Yudin, V.E.; Svetlichnyi, V.M.; Shumakov, A.N.; Letenko, D.G.; Feldman, A.Y.; Marom, G. The Nucleating Effect of Carbon Nanotubes on Crystallinity in R-BAPB-Type Thermoplastic Polyimide. Macromol. Rapid Commun. 2005, 26, 885–888. [Google Scholar] [CrossRef]
- Volgin, I.V.; Andreeva, M.V.; Larin, S.V.; Didenko, A.L.; Vaganov, G.V.; Borisov, I.L.; Volkov, A.V.; Klushin, L.I.; Lyulin, S.V. Transport Properties of Thermoplastic R-BAPB Polyimide: Molecular Dynamics Simulations and Experiment. Polymers 2019, 11, 1775. [Google Scholar] [CrossRef]
- Falkovich, S.G.; Larin, S.V.; Lyulin, A.V.; Yudin, V.E.; Kenny, J.M.; Lyulin, S.V. Influence of the Carbon Nanofiller Surface Curvature on the Initiation of Crystallization in Thermoplastic Polymers. RSC Adv. 2014, 4, 48606–48612. [Google Scholar] [CrossRef]
- Lyulin, S.V.; Larin, S.V.; Gurtovenko, A.A.; Lukasheva, N.V.; Yudin, V.E.; Svetlichnyi, V.M.; Lyulin, A.V. Effect of the SO2 Group in the Diamine Fragment of Polyimides on Their Structural, Thermophysical, and Mechanical Properties. Polym. Sci. Ser. A 2012, 54, 631–643. [Google Scholar] [CrossRef]
- Hegde, M.; Lafont, U.; Norder, B.; Picken, S.J.; Samulski, E.T.; Rubinstein, M.; Dingemans, T. SWCNT Induced Crystallization in an Amorphous All-Aromatic Poly (Ether Imide). Macromolecules 2013, 46, 1492–1503. [Google Scholar] [CrossRef]
- Nazarychev, V.; Larin, S.; Lyulin, A.; Dingemans, T.; Kenny, J.; Lyulin, S. Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an SWCNT-Polyetherimide Nanocomposite. Polymers 2017, 9, 548. [Google Scholar] [CrossRef] [PubMed]
- Larin, S.V.; Falkovich, S.G.; Nazarychev, V.M.; Gurtovenko, A.A.; Lyulin, A.V.; Lyulin, S.V. Molecular-Dynamics Simulation of Polyimide Matrix Pre-Crystallization near the Surface of a Single-Walled Carbon Nanotube. RSC Adv. 2014, 4, 830–844. [Google Scholar] [CrossRef]
- Nazarychev, V.M.; Dobrovskiy, A.Y.; Larin, S.V.; Lyulin, A.V.; Lyulin, S.V. Simulating Local Mobility and Mechanical Properties of Thermostable Polyimides with Different Dianhydride Fragments. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 375–382. [Google Scholar] [CrossRef]
- Waheed, N.; Ko, M.J.; Rutledge, G.C. Molecular Simulation of Crystal Growth in Long Alkanes. Polymer 2005, 46, 8689–8702. [Google Scholar] [CrossRef]
- Madzarevic, Z.P.; Shahid, S.; Nijmeijer, K.; Dingemans, T.J. The Role of Ortho-, Meta- and Para-Substitutions in the Main-Chain Structure of Poly (Etherimide) s and the Effects on CO2/CH4 Gas Separation Performance. Sep. Purif. Technol. 2019, 210, 242–250. [Google Scholar] [CrossRef]
- Tanaka, K.; Kita, H.; Okamoto, K.; Nakamura, A.; Kusuki, Y. The Effect of Morphology on Gas Permeability and Permselectivity in Polyimide Based on 3,3′,4,4′-Biphenyltetracarboxylic Dianhydride and 4,4′-Oxydianiline. Polym. J. 1989, 21, 127–135. [Google Scholar] [CrossRef]
- Okamoto, K.-I.; Tanaka, K.; Yokoshi, O.; Kita, H. The Effect of Morphology on Sorption and Transport of Carbon Dioxide in Poly (4,4′-Oxydiphenylene Pyromellitimide). J. Polym. Sci. Part B Polym. Phys. 1989, 27, 643–654. [Google Scholar] [CrossRef]
- Lyulin, S.V.; Gurtovenko, A.A.; Larin, S.V.; Nazarychev, V.M.; Lyulin, A.V. Microsecond Atomic-Scale Molecular Dynamics Simulations of Polyimides. Macromolecules 2013, 46, 6357–6363. [Google Scholar] [CrossRef]
- Kumar, A.; Sudarkodi, V.; Parandekar, P.V.; Sinha, N.K.; Prakash, O.; Nair, N.N.; Basu, S. Adhesion between a rutile surface and a polyimide: A coarse grained molecular dynamics study. Model. Simul. Mater. Sci. Eng. 2018, 26, 035012. [Google Scholar] [CrossRef]
- Pandiyan, S.; Parandekar, P.V.; Prakash, O.; Tsotsis, T.K.; Basu, S. Systematic Coarse Graining of a High-Performance Polyimide. Macromol. Theory Simul. 2015, 24, 513–520. [Google Scholar] [CrossRef]
- Wen, C.; Odle, R.; Cheng, S. Coarse-Grained Molecular Dynamics Modeling of a Branched Polyetherimide. Macromolecules 2021, 54, 143–160. [Google Scholar] [CrossRef]
- Odegard, G.M.; Clancy, T.C.; Gates, T.S. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 2005, 46, 553–562. [Google Scholar] [CrossRef]
- Volgin, I.V.; Larin, S.V.; Lyulin, A.V.; Lyulin, S.V. Coarse-Grained molecular-Dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer 2018, 145, 80–87. [Google Scholar] [CrossRef]
- Krajniak, J.; Zhang, Z.; Pandiyan, S.; Nies, E.; Samaey, G. Reverse mapping method for complex polymer systems. J. Comput. Chem. 2018, 39, 648–664. [Google Scholar] [CrossRef]
- Zhang, Z.; Krajniak, J.; Keith, J.R.; Ganesan, V. Mechanisms of Ion Transport in Block Copolymeric Polymerized Ionic Liquids. ACS Macro Lett. 2019, 8, 1096–1101. [Google Scholar] [CrossRef]
- Zhang, Z.; Krajniak, J.; Ganesan, V. A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules 2021, 54, 4997–5010. [Google Scholar] [CrossRef]
- Lyulin, S.V.; Larin, S.V.; Gurtovenko, A.A.; Nazarychev, V.M.; Falkovich, S.G.; Yudin, V.E.; Svetlichnyi, V.M.; Gofman, I.V.; Lyulin, A.V. Thermal Properties of Bulk Polyimides: Insights from Computer Modeling versus Experiment. Soft Matter 2014, 10, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Abraham, M.J.; van der Spoel, D.; Lindahl, E.; Hess, B. GROMACS User Manual Version 5.0.4. Available online: https://ftp.gromacs.org/pub/manual/manual-5.0.4.pdf (accessed on 10 July 2022).
- Glova, A.D.; Volgin, I.V.; Nazarychev, V.M.; Larin, S.V.; Lyulin, S.V.; Gurtovenko, A.A. Toward Realistic Computer Modeling of Paraffin-Based Composite Materials: Critical Assessment of Atomic-Scale Models of Paraffins. RSC Adv. 2019, 9, 38834–38847. [Google Scholar] [CrossRef]
- Fal’Kovich, S.G.; Larin, S.; Nazarychev, V.; Volgin, I.; Gurtovenko, A.; Lyulin, S. Computer Simulation of the Heat-Resistant Polyimides ULTEMTM and EXTEMTM with the Use of GROMOS53a6 and AMBER99 Force Fields. Polym. Sci. Ser. A 2014, 56, 558–567. [Google Scholar] [CrossRef]
- Nazarychev, V.M.; Lyulin, A.V.; Larin, S.V.; Gofman, I.V.; Kenny, J.M.; Lyulin, S.V. Correlation between the High-Temperature Local Mobility of Heterocyclic Polyimides and Their Mechanical Properties. Macromolecules 2016, 49, 6700–6710. [Google Scholar] [CrossRef]
- Nazarychev, V.M.; Lyulin, A.V.; Larin, S.V.; Gurtovenko, A.A.; Kenny, J.M.; Lyulin, S.V. Molecular Dynamics Simulations of Uniaxial Deformation of Thermoplastic Polyimides. Soft Matter 2016, 12, 3972–3981. [Google Scholar] [CrossRef]
- Lyulin, A.V.; Balabaev, N.K.; Michels, M.A.J.J. Molecular-Weight and Cooling-Rate Dependence of Simulated Tg for Amorphous Polystyrene. Macromolecules 2003, 36, 8574–8575. [Google Scholar] [CrossRef]
- Vollmayr, K.; Kob, W.; Binder, K. How Do the Properties of a Glass Depend on the Cooling Rate? A Computer Simulation Study of a Lennard-Jones System. J. Chem. Phys. 1996, 105, 4714–4728. [Google Scholar] [CrossRef]
- Neyertz, S. Tutorial: Molecular Dynamics Simulations of Microstructure and Transport Phenomena in Glassy Polymers. Soft Mater. 2006, 4, 15–83. [Google Scholar] [CrossRef]
- Yin, D.; Mackerell, A.D. Combined Ab Initio/Empirical Approach for Optimization of Lennard-Jones Parameters. J. Comput. Chem. 1998, 19, 334–348. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef] [PubMed]
- Oostenbrink, C.; Soares, T.A.; van der Vegt, N.F.A.; van Gunsteren, W.F. Validation of the 53A6 GROMOS Force Field. Eur. Biophys. J. 2005, 34, 273–284. [Google Scholar] [CrossRef]
- Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Müller-Plathe, F. Permeation of Polymers—A Computational Approach. Acta Polym. 1994, 45, 259–293. [Google Scholar] [CrossRef]
- Neyertz, S.; Brown, D. Single- and mixed-Gas sorption in large-Scale molecular models of glassy bulk polymers. Competitive sorption of a binary CH4/N2 and a ternary CH4/N2/CO2 mixture in a polyimide membrane. J. Memb. Sci. 2020, 614, 118478. [Google Scholar] [CrossRef]
- Neyertz, S.; Brown, D.; Salimi, S.; Radmanesh, F.; Benes, N.E. Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO2/CH4 and CO2/N2 Permselectivities in Hybrid Networks. Membranes 2022, 12, 526. [Google Scholar] [CrossRef]
- Riasat Harami, H.; Riazi Fini, F.; Rezakazemi, M.; Shirazian, S. Sorption in mixed matrix membranes: Experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method. J. Mol. Liq. 2019, 282, 566–576. [Google Scholar] [CrossRef]
- Liu, H.; Dai, S.; Jiang, D.E. Solubility of gases in a common ionic liquid from molecular dynamics based free energy calculations. J. Phys. Chem. B 2014, 118, 2719–2725. [Google Scholar] [CrossRef] [PubMed]
- Widom, B. Some Topics in the Theory of Fluids. J. Chem. Phys. 1963, 39, 2808–2812. [Google Scholar] [CrossRef]
- Hossain, S.; Kabedev, A.; Parrow, A.; Bergström, C.A.S.; Larsson, P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur. J. Pharm. Biopharm. 2019, 137, 46–55. [Google Scholar] [CrossRef]
- Web Page: Test Particle Insertion. Available online: https://gaseri.org/en/tutorials/gromacs/6-tpi/ (accessed on 10 July 2022).
- Gusev, A.A.; Müller-Plathe, F.; van Gunsteren, W.F.; Suter, U.W. Dynamics of Small Molecules in Bulk Polymers. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1994; Volume 116, pp. 207–247. [Google Scholar]
- Yampolskii, Y.; Shishatskii, S.; Alentiev, A.; Loza, K. Correlations with and Prediction of Activation Energies of Gas Permeation and Diffusion in Glassy Polymers. J. Membr. Sci. 1998, 148, 59–69. [Google Scholar] [CrossRef]
- Hofmann, D.; Heuchel, M.; Yampolskii, Y.; Khotimskii, V.; Shantarovich, V. Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies. Macromolecules 2002, 35, 2129–2140. [Google Scholar] [CrossRef]
- Hofmann, D.; Entrialgo-Castano, M.; Lerbret, A.; Heuchel, M.; Yampolskii, Y. Molecular modeling investigation of free volume distributions in stiff chain polymers with conventional and ultrahigh free volume: Comparison between molecular modeling and positron lifetime studies. Macromolecules 2003, 36, 8528–8538. [Google Scholar] [CrossRef]
- Anwar, M.; Turci, F.; Schilling, T. Crystallization Mechanism in Melts of Short N-Alkane Chains. J. Chem. Phys. 2013, 139, 214904–214908. [Google Scholar] [CrossRef]
- Ramani, R.; Alam, S. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis. J. Phys. Conf. Ser. 2015, 618, 1–5. [Google Scholar] [CrossRef]
- Madzarevic, Z.P.; Schut, H.; Čížek, J.; Dingemans, T.J. Free Volume in Poly (ether imide) Membranes Measured by Positron Annihilation Lifetime Spectroscopy and Doppler Broadening of Annihilation Radiation. Macromolecules 2018, 51, 9925–9932. [Google Scholar] [CrossRef]
- Robeson, L.M.; Smith, Z.P.; Freeman, B.D.; Paul, D.R. Contributions of Diffusion and Solubility Selectivity to the Upper Bound Analysis for Glassy Gas Separation Membranes. J. Membr. Sci. 2014, 453, 71–83. [Google Scholar] [CrossRef]
- Shen, K.H.; Brown, J.R.; Hall, L.M. Diffusion in Lamellae, Cylinders, and Double Gyroid Block Copolymer Nanostructures. ACS Macro Lett. 2018, 7, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
Amorphous State | Ordered State | |||
---|---|---|---|---|
CH4 | CO2 | CH4 | CO2 | |
Ea, kJ/mol | 64.4 ± 5.4 | 53.8 ± 1.1 | 72.6 ± 4.2 | 53.0 ± 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrovskiy, A.Y.; Nazarychev, V.M.; Volgin, I.V.; Lyulin, S.V. The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations. Membranes 2022, 12, 856. https://doi.org/10.3390/membranes12090856
Dobrovskiy AY, Nazarychev VM, Volgin IV, Lyulin SV. The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations. Membranes. 2022; 12(9):856. https://doi.org/10.3390/membranes12090856
Chicago/Turabian StyleDobrovskiy, Alexey Y., Victor M. Nazarychev, Igor V. Volgin, and Sergey V. Lyulin. 2022. "The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations" Membranes 12, no. 9: 856. https://doi.org/10.3390/membranes12090856
APA StyleDobrovskiy, A. Y., Nazarychev, V. M., Volgin, I. V., & Lyulin, S. V. (2022). The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations. Membranes, 12(9), 856. https://doi.org/10.3390/membranes12090856