Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of ZnO and Li-Doped ZnO
2.2. Models and Calculation Methods
2.3. Preparation of Membrane Cathode Assembly (MCA)
2.4. Microbial Fuel Cell Construction and Operation
2.5. Inoculum and Anolyte
2.6. Membrane Analysis
2.7. Analytical Measurements and Calculations: Electrochemical Evaluation of MFC
2.8. Analytical Evaluation and Measurement
2.9. Biofilm Formation Studies on ZnO-Impregnated PVA Membrane
3. Results
3.1. XRD Rietveld Analysis
3.2. Analysis through Transmission Electron Microscopy (TEM)
3.3. UV-Visible Spectroscopy
3.4. Analysis of Energy Bandgap Structure:
3.5. Photoluminescence Spectroscopy
3.6. Performance of PVA-ZnO-Li Membrane in MFC and Oxygen Mass Transfer
3.7. Voltage Generation
3.8. Effect of Li Addition in PVA-ZnO Membrane
3.9. Electrochemical Impedance Spectroscopy Studies (EIS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renewable Energy Road Map—Renewable Energies in the 21st Century: Building a More Sustainable Future—Policies. Available online: https://www.iea.org/policies/4745-renewable-energy-road-map-renewable-energies-in-the-21st-century-building-a-more-sustainable-future (accessed on 5 November 2022).
- Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Das, S.; Ghangrekar, M.M.; Mitra, A.; Banerjee, R. Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor. J. Inst. Eng. India Ser. A 2019, 100, 675–682. [Google Scholar] [CrossRef]
- Ashmath, S.; Kwon, H.-J.; Peera, S.G.; Lee, T.G. Solid-State Synthesis of Cobalt/NCS Electrocatalyst for Oxygen Reduction Reaction in Dual Chamber Microbial Fuel Cells. Nanomaterials 2022, 12, 4369. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Das, S.; Dubey, B.K.; Ghangrekar, M.M. High-Density Polyethylene Waste-Derived Carbon as a Low-Cost Cathode Catalyst in Microbial Fuel Cell. Int. J. Environ. Res. 2021, 15, 1085–1096. [Google Scholar] [CrossRef]
- Logan, B.E.; Regan, J.M. Microbial Fuel Cells—Challenges and Applications. Environ. Sci. Technol. 2006, 40, 5172–5180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Gao, P.; Zhao, T.S. Non-Precious Co3O4 Nano-Rod Electrocatalyst for Oxygen Reduction Reaction in Anion-Exchange Membrane Fuel Cells. Energy Environ. Sci. 2012, 5, 5333–5339. [Google Scholar] [CrossRef]
- Tian, F.; Zhong, S.; Nie, W.; Zeng, M.; Chen, B.; Liu, X. Multi-Walled Carbon Nanotubes Prepared with Low-Cost Fe-Al Bimetallic Catalysts for High-Rate Rechargeable Li-Ion Batteries. J. Solid State Electrochem. 2020, 24, 667–674. [Google Scholar] [CrossRef]
- Canuto de Almeida e Silva, T.; Bhowmick, G.D.; Ghangrekar, M.M.; Wilhelm, M.; Rezwan, K. SiOC-Based Polymer Derived-Ceramic Porous Anodes for Microbial Fuel Cells. Biochem. Eng. J. 2019, 148, 29–36. [Google Scholar] [CrossRef]
- Haddadi, S.; Nabi-Bidhendi, G.; Mehrdadi, N. Nitrogen Removal from Wastewater through Microbial Electrolysis Cells and Cation Exchange Membrane. J. Environ. Health Sci. Eng. 2014, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Peera, S.G.; Thandavarayan, M.; Chao, L.; Shaik, A.; Tae, G.L.; Zhongqing, J.; Shun, M. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int. J. Hydrog. Energy 2021, 46, 3056–3089. [Google Scholar] [CrossRef]
- Martinelli, A.; Matic, A.; Jacobsson, P.; Börjesson, L.; Navarra, M.A.; Fernicola, A.; Panero, S.; Scrosati, B. Structural Analysis of PVA-Based Proton Conducting Membranes. Solid State Ion. 2006, 177, 2431–2435. [Google Scholar] [CrossRef]
- Adam, M.R.; Hassan, A.A.M.; Othman, M.H.D.; Puteh, M.H.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Fabrication and characterization of hybrid poly (vinyl alcohol) based proton exchange membrane for energy generation from wastewater in microbial fuel cell system. Int. J. Energy Res. 2022, 46, 23418–23432. [Google Scholar] [CrossRef]
- Devanathan, R. Recent Developments in Proton Exchange Membranes for Fuel Cells. Energy Environ. Sci. 2008, 1, 101–119. [Google Scholar] [CrossRef]
- Miao, D.; Hu, H.; Gan, L. Fabrication of High Infrared Reflective Al-Doped ZnO Thin Films through Electropulsing Treatment for Solar Control. J. Alloys Compd. 2015, 639, 400–405. [Google Scholar] [CrossRef]
- Ahilan, V.; Bhowmick, G.D.; Ghangrekar, M.M.; Wilhelm, M.; Rezwan, K. Tailoring Hydrophilic and Porous Nature of Polysiloxane Derived Ceramer and Ceramic Membranes for Enhanced Bioelectricity Generation in Microbial Fuel Cell. Ionics 2019, 25, 5907–5918. [Google Scholar] [CrossRef]
- Ahilan, V.; de Barros, C.C.; Bhowmick, G.D.; Ghangrekar, M.M.; Murshed, M.M.; Wilhelm, M.; Rezwan, K. Microbial Fuel Cell Performance of Graphitic Carbon Functionalized Porous Polysiloxane Based Ceramic Membranes. Bioelectrochemistry 2019, 129, 259–269. [Google Scholar] [CrossRef]
- Choi, K.J.; Jang, H.W. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors 2010, 10, 4083–4099. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wang, C.; Chen, M.; Zhu, B. Recent Development of Ceria-Based (Nano)Composite Materials for Low Temperature Ceramic Fuel Cells and Electrolyte-Free Fuel Cells. J. Power Sources 2013, 234, 154–174. [Google Scholar] [CrossRef]
- Qiao, Z.; Xia, C.; Cai, Y.; Afzal, M.; Wang, H.; Qiao, J.; Zhu, B. Electrochemical and Electrical Properties of Doped CeO2-ZnO Composite for Low-Temperature Solid Oxide Fuel Cell Applications. J. Power Sources 2018, 392, 33–40. [Google Scholar] [CrossRef]
- Xia, C.; Qiao, Z.; Feng, C.; Kim, J.-S.; Wang, B.; Zhu, B. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials 2017, 11, 40. [Google Scholar] [CrossRef]
- Xia, C.; Mi, Y.; Wang, B.; Lin, B.; Chen, G.; Zhu, B. Shaping Triple-Conducting Semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Nat. Commun. 2019, 10, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Rui, Z.; Xia, C.; Anderson, M.; Lin, Y.S. Performance of Ionic-Conducting Ceramic/Carbonate Composite Material as Solid Oxide Fuel Cell Electrolyte and CO2 Permeation Membrane. Catal. Today 2009, 148, 303–309. [Google Scholar] [CrossRef]
- Thangadurai, V.; Weppner, W. Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research. Ionics 2006, 12, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, B.; Mi, Y.; Shih, S.-J.; Wei, J.; Huang, Y. A Novel Core–Shell Nanocomposite Electrolyte for Low Temperature Fuel Cells. J. Power Sources 2012, 201, 164–168. [Google Scholar] [CrossRef]
- Accardo, G.; Ferone, C.; Cioffi, R. Influence of Lithium on the Sintering Behavior and Electrical Properties of Ce0.8Gd0.2O1.9 for Intermediate-Temperature Solid Oxide Fuel Cells. Energy Technol. 2016, 4, 409–416. [Google Scholar] [CrossRef]
- Yi, J.B.; Lim, C.C.; Xing, G.Z.; Fan, H.M.; Van, L.H.; Huang, S.L.; Yang, K.S.; Huang, X.L.; Qin, X.B.; Wang, B.Y.; et al. Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO. Phys. Rev. Lett. 2010, 104, 137201. [Google Scholar] [CrossRef]
- Zeng, Y.-J.; Ye, Z.-Z.; Xu, W.-Z.; Chen, L.-L.; Li, D.-Y.; Zhu, L.-P.; Zhao, B.-H.; Hu, Y.-L. Realization of P-Type ZnO Films via Monodoping of Li Acceptor. J. Cryst. Growth 2005, 283, 180–184. [Google Scholar] [CrossRef]
- Acharya, A.; Bhattacharya, K.; Kumar Ghosh, C.; Narayan Biswas, A.; Bhattacharya, S. Charge Carrier Transport and Electrochemical Stability of Li2O Doped Glassy Ceramics. Mater. Sci. Eng. B 2020, 260, 114612. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Acharya, A.; Biswas, D.; Das, A.S.; Singh, L.S. Conductivity Spectra of Lithium Ion Conducting Glassy Ceramics. Phys. B Condens. Matter. 2018, 546, 10–14. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Acharya, A.; Das, A.S.; Bhattacharya, K.; Ghosh, C.K. Lithium Ion Conductivity in Li2O–P2O5–ZnO Glass-Ceramics. J. Alloys Compd. 2019, 786, 707–716. [Google Scholar] [CrossRef]
- Thapa, B.S.; Kim, T.; Pandit, S.; Song, Y.E.; Afsharian, Y.P.; Rahimnejad, M.; Kim, J.R.; Oh, S.-E. Overview of Electroactive Microorganisms and Electron Transfer Mechanisms in Microbial Electrochemistry. Bioresour. Technol. 2022, 347, 126579. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Li, W.-W.; Sheng, G.-P.; Liu, X.-W.; Yu, H.-Q. Recent Advances in the Separators for Microbial Fuel Cells. Bioresour. Technol. 2011, 102, 244–252. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Rafiuddin, I. PVC Based Polyvinyl Alcohol Zinc Oxide Composite Membrane: Synthesis and Electrochemical Characterization for Heavy Metal Ions. J. Ind. Eng. Chem. 2013, 19, 1365–1370. [Google Scholar] [CrossRef]
- Otaibi, A.A.; Patil, M.B.; Rajamani, S.B.; Mathad, S.N.; Patil, A.Y.; Amshumali, M.K.; Shaik, J.P.; Asiri, A.M.; Khan, A. Development and Testing of Zinc Oxide Embedded Sulfonated Poly (Vinyl Alcohol) Nanocomposite Membranes for Fuel Cells. Crystals 2022, 12, 1739. [Google Scholar] [CrossRef]
- Asadpour, S.; Raeisi Vanani, A.; Kooravand, M.; Asfaram, A. A Review on Zinc Oxide/Poly(Vinyl Alcohol) Nanocomposites: Synthesis, Characterization and Applications. J. Clean. Prod. 2022, 362, 132297. [Google Scholar] [CrossRef]
- Abdullah, O.; Al-Salman, Y.; Tahir, D.; Jamal, G.; Taha, H.; Mohamad, A.; Azawy, A. Effect of ZnO Nanoparticle Content on the Structural and Ionic Transport Parameters of Polyvinyl Alcohol Based Proton-Conducting Polymer Electrolyte Membranes. Membranes 2021, 11, 163. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Norri, M.T.; Ghangrekar, M.M. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Mater. Chem. Phys. 2016, 182, 86–93. [Google Scholar] [CrossRef]
- Majumdar, S.; Banerji, P. Effect of Li Incorporation on the Structural and Optical Properties of ZnO. Superlattices Microstruct. 2009, 45, 583–589. [Google Scholar] [CrossRef]
- Shakti, N.; Devi, C.; Patra, A.K.; Gupta, P.S.; Kumar, S. Lithium Doping and Photoluminescence Properties of ZnO Nanorods. AIP Adv. 2018, 8, 015306. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S.C.; Awana, V.P.S. Structural, Vibrational, Optical and Magnetic Properties of Sol–Gel Derived Nd Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2013, 24, 5102–5110. [Google Scholar] [CrossRef]
- Popa, N.C. The (Hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for All Laue Groups in Rietveld Refinement. J. Appl. Cryst. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Alonso, J.; Martínez-Lope, M.; García-Muñoz, J.L.; Fernández-Díaz, M. A Structural and Magnetic Study of the Defect Perovskite LaNiO2.5 from High-Resolution Neutron Diffraction Data. J. Phys. Condens. Matter 1999, 9, 6417. [Google Scholar] [CrossRef]
- Pandit, S.; Khilari, S.; Bera, K.; Pradhan, D.; Das, D. Application of PVA–PDDA Polymer Electrolyte Composite Anion Exchange Membrane Separator for Improved Bioelectricity Production in a Single Chambered Microbial Fuel Cell. Chem. Eng. J. 2014, 257, 138–147. [Google Scholar] [CrossRef]
- Khilari, S.; Pandit, S.; Ghangrekar, M.M.; Pradhan, D.; Das, D. Graphene Oxide-Impregnated PVA–STA Composite Polymer Electrolyte Membrane Separator for Power Generation in a Single-Chambered Microbial Fuel Cell. Ind. Eng. Chem. Res. 2013, 52, 11597–11606. [Google Scholar] [CrossRef]
- Neethu, B.; Ghangrekar, M.M. Electricity Generation through a Photo Sediment Microbial Fuel Cell Using Algae at the Cathode. Water Sci. Technol. 2017, 76, 3269–3277. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Ghangrekar, M.M.; Banerjee, R. Improved wastewater treatment by using integrated microbial fuel cell-membrane bioreactor system along with ruthenium/activated carbon cathode catalyst to enhance bio-energy recovery. In Climate Impacts on Water Resources in India: Environment and Health; Water Science and Technology Library; Pandey, A., Mishra, S.K., Kansal, M.L., Singh, R.D., Singh, V.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 183–192. ISBN 978-3-030-51427-3. [Google Scholar]
- Pandit, S.; Shanbhag, S.; Mauter, M.; Oren, Y.; Herzberg, M. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes. Environ. Sci. Technol. 2017, 51, 10022–10030. [Google Scholar] [CrossRef]
- Hou, Q.; Liu, Y. Effect of Li Doping and Point Vacancy on Photocatalytic Properties and Mechanism of ZnO. Chem. Phys. 2020, 531, 110657. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Y.; Lv, Y. Correlation Effects on Lattice Relaxation and Electronic Structure of ZnO within the GGA+ U Formalism. J. Phys. Chem. C 2013, 117, 26029–26039. [Google Scholar] [CrossRef]
- Honglin, L.; Yingbo, L.; Jinzhu, L.; Ke, Y. First-Principles Study of p-Type Conductivity of N-Al/Ga/In Co-Doped ZnO. Phys. Scr. 2015, 90, 025803. [Google Scholar] [CrossRef]
- Wardle, M.; Goss, J.; Briddon, P. Theory of Li in ZnO: A Limitation for Li-Based p-Type Doping. Phys. Rev. B 2005, 71, 155205. [Google Scholar] [CrossRef]
- Shalim, S.; Atta ur Rehman, S.; Musa, M.C.; Mehmet, A.G. Complex Impedance Analyses of Li doped ZnO Electrolyte Materials. Sci. Rep. 2020, 10, 8228. [Google Scholar]
- Panigrahy, B.; Aslam, M.; Misra, D.S.; Ghosh, M.; Bahadur, D. Defect-Related Emissions and Magnetization Properties of ZnO Nanorods. Adv. Funct. Mater. 2010, 20, 1161–1165. [Google Scholar] [CrossRef]
- Bandaru, S.R.; Behera, M.; Ghangrekar, M. Performance and Economics of Low Cost Clay Cylinder Microbial Fuel Cell for Wastewater Treatment. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; pp. 1189–1196. [Google Scholar]
- Nair, R.; Seetharaman, B.; Renganathan, K.; Venkatraman, K. Performance of Salt-Bridge Microbial Fuel Cell at Various Agarose Concentrations Using Hostel Sewage Waste as Substrate. Int. J. Adv. Res. Technol. 2013, 2, 326. [Google Scholar]
- Moharir, P.V.; Tembhurkar, A.R. Effect of Recirculation on Bioelectricity Generation Using Microbial Fuel Cell with Food Waste Leachate as Substrate. Int. J. Hydrog. Energy 2018, 43, 10061–10069. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Dhar, D.; Ghangrekar, M.M.; Banerjee, R. TiO2-Si- or SrTiO3-Si-Impregnated PVA–Based Low-Cost Proton Exchange Membranes for Application in Microbial Fuel Cell. Ionics 2020, 26, 6195–6205. [Google Scholar] [CrossRef]
Parameters | Symbol | x = 0.0 | x = 0.01 | x = 0.03 | x = 0.05 | x = 0.07 |
---|---|---|---|---|---|---|
Lattice Parameters with Space Group P63mc | a (Å) c (Å) V (Å3) | 3.2482(1) 5.2034(25) 47.546(1) | 3.2495(3) 5.2058(1) 47.605(1) | 3.2488(2) 5.2048(1) 47.577(1) | 3.2482(3) 5.2028(1) 47.540(1) | 3.2477(2) 5.2038(1) 47.536(1) |
Zn/Li at 2b (1/3, 2/3, 0) O at 2b (1/3, 2/3, u) | U | 0.3798(5) | 0.3808(4) | 0.3808(5) | 0.3796(5) | 0.3085(5) |
Bond Lengths (Å) | O-Zn/Li O-Zn/Li | 1.976(3) 1.977(1) | 1.976(1) 1.982(2) | 1.975(1) 1.982(3) | 1.975(1) 1.977(1) | 1.975(1) 1.980(3) |
Bond Angles (degree) | O-Zn/Li-O O-Zn/Li-O | 108.44 (16) 110.48(3) | 108.30(2) 110.62(3) | 108.30(16) 110.61(3) | 108.47(16) 110.45(3) | 108.35(16) 110.57(3) |
BVS | Zn | 1.914(4) | 1.909(4) | 1.911(4) | 1.914(4) | 1.914(4) |
Li | - | 1.004(1) | 1.005(2) | 1.006(2) | 1.006(2) | |
O | 1.914(4) | 1.900(4) | 1.884(4) | 1.869(4) | 1.851(4) | |
Particle Size (nm) | D | 30 | 28 | 34 | 48 | - |
Rietveld Reliability Parameters | RP Rwp χ2 | 2.33 3.02 1.92 | 2.08 2.68 1.49 | 2.16 2.72 1.49 | 2.36 2.97 1.86 | 2.22 2.82 1.66 |
Membrane | Thickness (µm) | Ionic Conductivity (S cm−1) | IEC (milliequivalent m−1) | Water Uptake (gm gm−1) |
---|---|---|---|---|
0.50% (w/w) PVA-ZnO | 102 | 1.1 × 10−2 | 0.58 | 0.76 |
0.75% (w/w) PVA-ZnO | 108 | 1.5 × 10−2 | 0.72 | 0.84 |
1.00% (w/w) PVA-ZnO | 110 | 2.2 × 10−2 | 0.80 | 1.08 |
1.50% (w/w) PVA-ZnO | 114 | 2.4 × 10−2 | 0.87 | 2.13 |
2.00% (w/w) PVA-ZnO | 115 | 2.3 × 10−3 | 0.84 | 1.68 |
Membrane | Type of Reactor | Volume of Anolyte (mL) | Anode (cm2) | Cathode (cm2) | Power Output (W/m3) | References |
---|---|---|---|---|---|---|
AMI-7001 | Single chambered | - | 228/Carbon cloth 228 | carbon cloth/228 loaded with 0.5 mg/cm2 Pt/C | 4.9 | [56] |
Nanoparticle Fe3O4 loaded | Dual chambered | 760 | 20/Graphite plate | Graphite plate/20 | 0.052 | [57] |
Sulfonated poly in poly CEM | Air cathode | 42.5 | 15/carbon paper sheet | carbon paper sheet loaded with 0.3 mg/cm2 Pt/C | 6 | [58] |
Poly [2,5-benzimidazole] (ABPBI) CEM | Dual chambered | 340 | (0.5 mg/cm2 Pt/C loaded carbon) Graphite felt/36 | Graphite felt/36 loaded with 0.5 mg/cm2 Pt/C | 1.027 | [59] |
Li-ZnO-PVA CEM | Single chambered | 110 | Carbon felt (32 cm2) | Carbon felt (32 cm2) | 6.3 | This study |
MFC Type | PEM Material | Power Density | Reference |
---|---|---|---|
Dual chamber | Clay material | 12.8 mW/m2 | [56] |
Two-chamber | Salt-bridge | 78.2 mW/m2 | [57] |
Two-chamber | Ultrex | 29.2 mW/m2 | [58] |
Dual chamber | TiO2-Si-impregnated PVA | 247 mW/m2 | [59] |
Single chamber | Li-ZnO-PVA (0.9 wt%) | 5.5 W/m3 | This study |
Single chamber | Li-ZnO-PVA (0.30 wt%) | 6.6 W/m3 | This study |
Single chamber | Li-ZnO-PVA (0.00 wt%) | 6.3 W/m3 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, S.; Kumar, A.; Pandit, S.; Vempaty, A.; Kumar, M.; Thapa, B.S.; Rai, N.; Peera, S.G. Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells. Membranes 2023, 13, 55. https://doi.org/10.3390/membranes13010055
Chauhan S, Kumar A, Pandit S, Vempaty A, Kumar M, Thapa BS, Rai N, Peera SG. Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells. Membranes. 2023; 13(1):55. https://doi.org/10.3390/membranes13010055
Chicago/Turabian StyleChauhan, Sunil, Ankit Kumar, Soumya Pandit, Anusha Vempaty, Manoj Kumar, Bhim Sen Thapa, Nishant Rai, and Shaik Gouse Peera. 2023. "Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells" Membranes 13, no. 1: 55. https://doi.org/10.3390/membranes13010055
APA StyleChauhan, S., Kumar, A., Pandit, S., Vempaty, A., Kumar, M., Thapa, B. S., Rai, N., & Peera, S. G. (2023). Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells. Membranes, 13(1), 55. https://doi.org/10.3390/membranes13010055