Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the PVDF Nanofiber Membranes
2.3. Sample Preparation
2.4. Two-Stage ENM Filtration
2.5. Analytical Methods
2.5.1. Membrane Characterization
2.5.2. Evaluation of the Membrane Resistance and Filtration Behaviors
2.5.3. Reusability of the Nanofiber Membranes
2.5.4. Size Distribution, Fourier-Transform Infrared Spectroscopy, and Zeta Potential
2.5.5. Determination of the EPS Recovery and the HMI Removal Efficiencies
3. Results and Discussion
3.1. Characterization of the Nanofiber Membranes
3.2. Comparison between the EPS Recovery Properties of the Fabricated Nanofiber Membranes and Commercial Membranes
3.3. Influence of the Applied Pressure on the ENM Filtration of an EPS Solution
3.4. Fouling and Reusability of the ENMs in the Filtration of EPSs
3.5. Removal of HIMs via EPS–ENM Dead-End Filtration
3.6. Advantages of Removing HIMs by EPS–ENM Filtration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van Loosdrecht, M.C.M.; Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef]
- Winkler, M.K.H.; van Loosdrecht, M.C.M. Intensifying existing urban wastewater. Science 2022, 375, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Kroiss, H. What is the potential for utilizing the resources in sludge? Water Sci. Technol. 2004, 49, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, A.; Divyapriya, G.; Srivastava, V.; Laiju, A.R.; Nidheesh, P.V.; Suresh Kumar, M. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef] [PubMed]
- Sarpong, G.; Gude, V.G. Codigestion and combined heat and power systems energize wastewater treatment plants—Analysis and case studies. Renew. Sust. Energy. Rev. 2021, 144, 110937. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Hao, X.-D.; Wang, Z.; Song, X.; Iritani, E.; Katagiri, N. Membrane recovery of alginate in an aqueous solution by the addition of calcium ions: Analyses of resistance reduction and fouling mechanism. J. Membr. Sci. 2017, 535, 312–321. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties. Chem. Eng. J. 2018, 354, 866–874. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Song, X.; Hao, X.-D.; Yang, W.-Y.; Iritani, E.; Katagiri, N. Ca2+-aided separation of polysaccharides and proteins by microfiltration: Implications for sludge processing. Sep. Purif. Technol. 2018, 202, 318–325. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Jin, J.-Y.; Wang, Q.-H.; Song, X.; Hao, X.-D.; Iritani, E.; Katagiri, N. Ultrafiltration recovery of alginate: Membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chin. J. Chem. Eng. 2020, 28, 2881–2889. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Wang, X.; Wang, Q.-H.; Fang, X.-M.; Jin, J.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J. Membr. Sci. 2020, 606, 118103. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Sun, X.-Z.; Yang, X.-X.; Hao, X.-D. News on alginate recovery by forward osmosis: Reverse solute diffusion is useful. Chemosphere. 2021, 285, 131483. [Google Scholar] [CrossRef]
- Glińska, K.; Stüber, F.; Fabregat, A.; Giralt, J.; Font, J.; Bengoa, C. Moving municipal WWTP towards circular economy: Cellulose recovery from primary sludge with ionic liquid. Resour. Conserv. Recycl. 2020, 154, 104626. [Google Scholar] [CrossRef]
- Felz, S.; Vermeulen, P.; van Loosdrecht, M.C.M.; Lin, Y.-M. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). Water. Res. 2019, 157, 201–208. [Google Scholar] [CrossRef]
- Wei, L.; Li, J.; Xue, M.; Wang, S.; Li, Q.; Qin, K.; Jiang, J.; Ding, J.; Zhao, Q. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms. Bioresour. Technol. 2019, 291, 121868. [Google Scholar] [CrossRef]
- Kim, N.K.; Mao, N.; Lin, R.; Bhattacharyya, D.; van Loosdrecht, M.C.M.; Lin, Y. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Res. 2020, 170, 115344. [Google Scholar] [CrossRef]
- Kim, N.K.; Lin, R.; Bhattacharyya, D.; van Loosdrecht, M.C.M.; Lin, Y. Insight on how biopolymers recovered from aerobic granular wastewater sludge can reduce the flammability of synthetic polymers. Sci. Total. Environ. 2022, 805, 150434. [Google Scholar] [CrossRef]
- More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Siddique, M.S.; Graham, N.; Yu, W. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification. Environ. Pollut. 2021, 280, 116998. [Google Scholar] [CrossRef]
- Siddharth, T.; Sridhar, P.; Vinila, V.; Tyagi, R.D. Environmental applications of microbial extracellular polymeric substance (EPS): A review. J. Environ. Manag. 2021, 287, 112307. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface. 2009, 145, 1–22. [Google Scholar] [CrossRef]
- Li, Z.; Wang, K.; Zhang, Y. Eco-friendly separation and purification of soybean oligosaccharides via nanofiltration technology. Sep. Purif. Technol. 2018, 53, 777–785. [Google Scholar] [CrossRef]
- Wu, D.; Feng, Q.; Li, M.; Wei, A.; Li, J.; Liu, C.; Xu, H.; Cheng, W. Preparation and protein separation properties of the porous polystyrene/ethylene–vinyl acetate copolymer blend nanofibers membranes. ACS Omega 2019, 4, 20152–20158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, J.; Wu, M.; Chen, J.; Lin, H.; He, Y. Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere 2020, 255, 126953. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S.S.; Buhr, K.; Ebert, K. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J. Membr. Sci. 2010, 365, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Gee, S.; Johnson, B.; Smith, A.L. Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. J. Membr. Sci. 2018, 563, 804–812. [Google Scholar] [CrossRef]
- Abu-Obaid, S.; Aktij, S.A.; Tabe, S.; Sadrzadeh, M.; Farnood, R.R. Surfactant-modified adsorptive electrospun nanofiber membrane impregnated with akageneite for phosphorus recovery from wastewater. J. Environ. Chem. Eng. 2022, 10, 108786. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, X.; Liu, X.; Yu, J.; Ding, B. Electrospun nanofibers withstandable to high-temperature reactions: Synergistic effect of polymer relaxation and solvent removal. Adv. Fiber Mater. 2021, 3, 14–25. [Google Scholar] [CrossRef]
- Meng, L.; Lv, Y.; Deng, P.; Li, N.; Huang, M.; Mansouri, J.; Chen, V. Novel PVDF membrane with sandwich structure for enhanced membrane distillation. Chem. Eng. J. 2021, 415, 128960. [Google Scholar] [CrossRef]
- Venkatesh, K.; Arthanareeswaran, G.; Bose, A.C.; Kumarc, P.S.; Kweon, J. Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion. Sep. Purif. Technol. 2021, 257, 117926. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, J.; Huang, Q.; Hu, P.; Xiao, C. PVDF fiber membrane with ordered porous structure via 3D printing near field electrospinning. J. Membr. Sci. 2021, 618, 118709. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, B.; Gong, H.; Li, J. Fabrication of hierarchical porous poly (l-lactide) (PLLA) fibrous membrane by electrospinning. Polymer 2021, 226, 123797. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Li, D.; Liu, Q.; Deng, B. Preparation and characterization of novel thin film composite nanofiltration membrane with PVDF tree-like nanofiber membrane as composite scaffold. Mater. Design 2020, 196, 109101. [Google Scholar] [CrossRef]
- Zong, H.; Xia, X.; Liang, Y.; Dai, S.; Alsaedi, A.; Hayat, T.; Kong, F.; Pan, J.H. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mat. Sci. Eng. C 2018, 92, 1075–1091. [Google Scholar] [CrossRef]
- Li, W.; Chao, S.; Li, Y.; Bai, F.; Teng, Y.; Li, X.; Li, L.; Wang, C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. J. Membr. Sci. 2022, 642, 119964. [Google Scholar] [CrossRef]
- Liu, G.; Tsen, W.-C.; Jang, S.-C.; Hu, F.; Zhong, F.; Zhang, B.; Wang, J.; Liu, H.; Wang, G.; Wen, S.; et al. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J. Membr. Sci. 2020, 611, 118242. [Google Scholar] [CrossRef]
- Zhou, Z.; Lin, W.; Wu, X.-F. Electrospinning ultrathin continuous cellulose acetate fibers for high-flux water filtration. Colloid Surface A Physicochem. Eng. Asp. 2016, 494, 21–29. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Z.; Ma, H.; Venkateswaran, S.; Hsiao, B.S. Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Sep. Purif. Technol. 2020, 242, 116794. [Google Scholar] [CrossRef]
- Yadav, P.; Farnood, R.; Kumar, V. Superhydrophobic modification of electrospun nanofibrous Si@PVDF membranes for desalination application in vacuum membrane distillation. Chemosphere 2022, 287, 132092. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Duan, C.; Yan, Z.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Electrospun nanofibrous composite materials: A versatile platform for high efficiency protein adsorption and separation. Compos. Commun. 2018, 8, 92–100. [Google Scholar] [CrossRef]
- Wang, Z.; Sahadevan, R.; Crandall, C.; Menkhaus, T.J.; Fong, H. Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. J. Membr. Sci. 2020, 611, 118327. [Google Scholar] [CrossRef]
- Han, J.-L.; Cao, D.-Q.; Hao, X.-D. Preparation of electrospun nanofibrous membrane for recovery and concentration of extracellular polymeric substances from excess sludge. In Proceedings of the Preprint of 52th Autumn Meeting, Online, 22–24 September 2021; The Society of Chemical Engineers: Okayama, Japan, 2021; p. PA354. [Google Scholar]
- Yu, X.; Zhu, Y.; Cheng, C.; Zhang, T.; Wang, X.; Hsiao, B.S. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. J. Membr. Sci. 2019, 582, 151–163. [Google Scholar] [CrossRef]
- Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Hou, D.; Fu, C.; Wang, K.; Wang, J. Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. J. Environ. Sci. 2019, 75, 277–288. [Google Scholar] [CrossRef]
- Ren, J.; Woo, Y.C.; Yao, M.; Lim, S.; Tijing, L.D.; Shona, H.K. Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration. Sci. Total Environ. 2019, 688, 787–796. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Cao, L.; Wang, Y.; Li, L.; Li, W. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation. Sep. Purif. Technol. 2021, 269, 118726. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Gutierrez, L.; Khumalo, N.; Derese, S.; Mamba, B.B.; Verliefde, A.R.; Mhlanga, S.D. Superhydrophobic PVDF nanofibre membranes coated with an organic fouling resistant hydrophilic active layer for direct-contact membrane distillation. Colloid Surface A Physicochem. Eng. Asp. 2019, 575, 363–372. [Google Scholar] [CrossRef]
- Ke, G.; Jin, X.; Hu, H. Electrospun polyvinylidene fluoride/polyacrylonitrile composite fibers: Fabrication and characterization. Iran. Polym. J. 2020, 29, 37–46. [Google Scholar] [CrossRef]
- Ahmadi, A.; Qanati, O.; Seyed Dorraji, M.S.; Rasoulifard, M.H.; Vatanpour, V. Investigation of antifouling performance a novel nanofibrous S-PVDF/PVDF and S-PVDF/PVDF/GO membranes against negatively charged oily foulants. J. Membr. Sci. 2017, 536, 86–97. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohyd. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zheng, H.; Zhang, B.; Zuo, Q.; Fan, K. Functionalized dual modification of covalent organic framework for efficient and rapid trace heavy metals removal from drinking water. Chemosphere 2022, 290, 133215. [Google Scholar] [CrossRef]
- Phan, D.-N.; Khan, M.Q.; Nguyen, N.-T.; Phan, T.-T.; Ullah, A.; Khatri, M.; Kien, N.N.; Kim, I.-S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohyd. Polym. 2021, 252, 117175. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, Y.-M.; Zhang, B.-G.; Dai, Y.-R. A critical review on the electrospun anofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Metal-organic frameworks supported on nanofibers to remove heavy metals. J. Mater. Chem. A 2018, 6, 4550–4555. [Google Scholar] [CrossRef]
- Pi, H.; Wang, R.; Ren, B.; Zhang, X.; Wu, J. Facile fabrication of multi-structured SiO2@PVDF-HFP nanofibrous membranes for enhanced copper ions adsorption. Polymers 2018, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Manzoor, K.; Ikram, S. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. Int. J. Biol. Macromol. 2017, 105, 190–203. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, F.; Zhang, N.; Wei, X.; Yang, J.; Zhou, Z. Blend-electrospun poly (vinylidene fluoride)/polydopamine membranes: Self-polymerization of dopamine and the excellent adsorption/separation abilities. J. Mater. Chem. A 2017, 5, 14430–14443. [Google Scholar]
- Ma, F.-F.; Zhang, D.; Zhang, N.; Huang, T.; Wang, Y. Polydopamine-assisted deposition of polypyrrole on electrospun poly (vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem. Eng. J. 2018, 354, 432–444. [Google Scholar] [CrossRef]
- Managheb, M.; Zarghami, S.; Mohammadi, T.; Asadi, A.A.; Sahebi, S. Enhanced dynamic Cu(II) ion removal using hot-pressed chitosan /poly (vinyl alcohol) electrospun nanofibrous affinity membrane(ENAM). Process Saf. Environ. Prot. 2021, 146, 329–337. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Liu, Y.; Meng, L.; Ma, M. Functionalized electrospun nanofiber membranes for water treatment: A review. Sci. Total Environ. 2020, 739, 139944. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-Q.; Iritani, E.; Katagiri, N. Properties of filter cake formed during dead-end microfiltration of O/W emulsion. J. Chem. Eng. Jpn. 2013, 46, 593–600. [Google Scholar] [CrossRef]
- Iritani, E.; Katagiri, N.; Takenaka, T.; Yamashita, Y. Membrane pore blocking during cake formation in constant pressure and constant flux dead-end microfiltration of very dilute colloids. Chem. Eng. Sci. 2015, 122, 465–473. [Google Scholar] [CrossRef]
- Iritani, E.; Katagiri, N. Developments of blocking filtration model in membrane filtration. KONA Powder Part. J. 2016, 33, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, S.; Cazzola, M.; Peretti, V.; Stella, B.; Spriano, S. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: Surface charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 2018, 6, 60. [Google Scholar] [CrossRef]
- Liu, X.; Ma, H.; Hsiao, B.S. Interpenetrating nanofibrous composite membranes for water purification. ACS Appl. Nano Mater. 2019, 2, 3606–3614. [Google Scholar] [CrossRef]
- Park, M.J.; Gonzales, R.R.; Abdel-Wahab, A.; Phuntsho, S.; Shon, H.K. Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 2018, 426, 50–59. [Google Scholar] [CrossRef]
- Khayet, M.; García-Payo, C.; Matsuura, T. Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation. J. Membr. Sci. 2019, 588, 117215. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Xu, J.; Luo, H.-W.; Li, W.-W.; Li, W.-H.; Yu, H.-Q.; Xie, Z.; Wei, S.-Q.; Hu, F.-C. Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res. 2013, 47, 607–614. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, J.; Zhou, S.; Lin, X.; Ye, L.; Song, C.; Yan, Y. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion. Water Res. 2015, 73, 252–264. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Lu, H.-L.; Pan, X.-Y.; Dong, G.; Kamran, M.A.; Xu, R.-K. Effects of extracellular polymeric substances of Pseudomonas fluorescens, citrate, and oxalate on Pb sorption by an acidic Ultisol. Ecotoxicol. Environ. Saf. 2019, 171, 790–797. [Google Scholar] [CrossRef]
- Zhang, C.; Mao, H.; Cui, R.; Zhang, X.; Yang, J.; Ji, J.; Zhou, X. Electrospinning preparation, energetic characteristics and reaction mechanism of corrosion-resistant Si@PVDF nanostructured energetic films. Combust. Flame 2022, 237, 111887. [Google Scholar] [CrossRef]
- Valluri, S.K.; Schoenitz, M.; Dreizin, E. Fluorine-containing oxidizers for metal fuels in energetic formulations. Def. Technol. 2019, 15, 1–22. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, W.; Li, F.; Pan, Y.; Wang, C.; Tian, H. Occurrence, partition, and risk of seven heavy metals in sediments, seawater, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. J. Environ. Manag. 2021, 279, 111771. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Deng, R.; Cheng, Y.-F.; Zhou, Y.-H.; Buayi, X.; Zhang, X.; Wang, H.-Z.; Jin, R.-C. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation. J. Hazard. Mater. 2015, 300, 838–846. [Google Scholar] [CrossRef]
- Pagliaccia, B.; Carretti, E.; Severi, M.; Berti, D.; Lubello, C.; Lotti, T. Heavy metal biosorption by Extracellular Polymeric Substances (EPS) recovered from anammox granular sludge. J. Hazard. Mater. 2022, 424, 126661. [Google Scholar] [CrossRef]
- Sun, X.-F.; Wang, S.G.; Zhang, X.-M.; Paul Chen, J.; Li, X.-M.; Gao, B.-Y.; Ma, Y. Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. J. Colloid Interface Sci. 2009, 335, 11–17. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, Z.; Lu, T.; Xiong, R.; Huang, C. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 2022, 430, 132989. [Google Scholar] [CrossRef]
- Wang, B.-B.; Liu, X.-T.; Chen, J.-M.; Peng, D.-C.; He, F. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: The impacts of polymerization degree of proteinaceous substrates. Water Res. 2018, 129, 133–142. [Google Scholar] [CrossRef]
Membrane Fabrication | d [μm] | D [μm] | ω [%] | T [μm] | θ [°] | Ft [MPa] | ε [%] | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
PVDF [wt.%] | Solvent [v/v] | Modification [wt.%] | ||||||||
15 | DMF/acetone: 9:1 | None | 1.82 | 0.128 | 68 | 103 | 90 | 1.86 | 55.2 | [47] |
15 | DMAc/acetone: 4:1 | w/h: 1:1 | 30 | - | 36 | - | 137 | 0.19 | 4.8 | [32] |
2:1 | 45 | 40 | 134 | 0.13 | 3.4 | |||||
3:1 | 90 | 44 | 131 | 0.08 | 2.4 | |||||
15 | DMF/acetone: 3:1 | GO: 0 | 0.8 | 0.167 | - | 100 | 140 | 6.40 | 49.3 | [48] |
0.5 | 0.99 | 0.259 | 131 | 5.20 | 27 | |||||
1 | 1.13 | 0.311 | 119 | 4.80 | 12.6 | |||||
3 | 1.21 | 0.355 | 110 | 4.40 | 9.5 | |||||
15 | DMF | SiO2NPs: 0 | 22.00 | 0.400 | - | - | <135 | - | - | [49] |
4 | 22.00 | 0.600 | 135 | |||||||
15 | DMAc | None | 1.33 | - | 84 | 121 | 92 | 2.24 | 13.0 | [50] |
f-SiO2NPs: 1 | 1.24 | 80 | 116 | 152 | 2.13 | 26.0 | ||||
AgNPs/f-MWCNTs: 2:1 | 0.64 | 82 | 135 | 56 | 2.38 | 30.0 | ||||
13.5 | DMF/acetone: 6:4 | SiO2NPs: 0 | 0.37 | 0.265 | 84 | 107 | 132 | 1.83 | - | [41] |
2 | 0.32 | 0.206 | 81 | 110 | 143 | 2.16 | ||||
4 | 0.28 | 0.209 | 78 | 97 | 149 | 2.56 | ||||
6 | 0.27 | 0.209 | 77 | 98 | 155 | 1.55 | ||||
12 | DMF/acetone: 6:4 | None | 1.30 | 0.415 | - | 91 | 129 | - | - | [27] |
DMSO/acetone: 6:4 | 2.40 | 0.625 | 87 | 130 | ||||||
Anhydrous/acetone: 6:4 | 3.58 | 0.521 | 82 | 116 | ||||||
12 | DMF | PAN: 0 | - | 0.550 | - | - | 133 | 7.125 | 13.5 | [51] |
10.8 | 1.2 | 0.600 | 131 | 9.95 | 13.0 | |||||
6 | 6 | 0.550 | 118 | 7.40 | 7.8 | |||||
8 | NMP | DTPA/MWCNT/TiO2: 0 | 0.006 | 0.120 | - | 114 | 62 | 0.13 | 1.8 | [31] |
0.5 | - | 0.116 | 117 | 47 | 0.26 | 3.5 | ||||
2 | 0.102 | 118 | 38 | 0.29 | 5.7 | |||||
6 | 0.007 | 0.096 | 118 | 27 | 0.21 | 6.1 | ||||
8 | DMF/acetone: 6:4 | GO: 0 | 0.3 | 0.176 | 83–85 | 50 | 137 | - | - | [52] |
5 | 0.19 | 0.131 | 89 | |||||||
14 | DMAc/acetone: 4:1 | None | 1.47 | 0.504 | 52.46 | 125 | 109.5 | 1.54 | 15.30 | This study |
18 | 7.66 | 0.865 | 71.53 | 186 | 119.1 | 2.22 | 20.16 | |||
22 | 19.36 | 1.772 | 73.24 | 240 | 129.3 | 2.58 | 36.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, D.-Q.; Liu, X.-D.; Han, J.-L.; Zhang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. Membranes 2023, 13, 74. https://doi.org/10.3390/membranes13010074
Cao D-Q, Liu X-D, Han J-L, Zhang W-Y, Hao X-D, Iritani E, Katagiri N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. Membranes. 2023; 13(1):74. https://doi.org/10.3390/membranes13010074
Chicago/Turabian StyleCao, Da-Qi, Xiao-Dan Liu, Jia-Lin Han, Wen-Yu Zhang, Xiao-Di Hao, Eiji Iritani, and Nobuyuki Katagiri. 2023. "Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes" Membranes 13, no. 1: 74. https://doi.org/10.3390/membranes13010074
APA StyleCao, D. -Q., Liu, X. -D., Han, J. -L., Zhang, W. -Y., Hao, X. -D., Iritani, E., & Katagiri, N. (2023). Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. Membranes, 13(1), 74. https://doi.org/10.3390/membranes13010074