Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanofiltration Membrane
2.2. Feed and Recovery Solution
2.2.1. Feed
2.2.2. Nanofiltration System
2.3. Theoretical Model
3. Results and Discussion
3.1. The Effects of Operating Condition Pressure and pH on the Solution Flux, Jv
3.2. The Effect of Operating Condition Pressure and pH on the Ionic Flux, Js
3.3. Optimizing Parameters by Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- IEA. Electric Cars Fend off Supply Challenges to More than Double Global Sales; IEA: Paris, France, 2022. [Google Scholar]
- U.S Geological Survey. Mineral Commodity Summary—Lithium Carbonate; Technical Report 703; U.S Geological Survey: Washington, DC, USA, 2022. [Google Scholar]
- Sujoto, V.S.H.; Astuti, W.; Sumardi, S.; Louis, I.S.Y.; Petrus, H.T.B.M. Effect of Operating Conditions on Lithium Recovery from Synthetic Geothermal Brine Using Electrodialysis Method. J. Sustain. Metall. 2022, 8, 274–287. [Google Scholar] [CrossRef]
- Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 2014, 35, 183–193. [Google Scholar] [CrossRef]
- Devina Manao, R.; Alfianto, R.; Sumarno, S. Recovery Garam Lithium Garam Lithium Pada Air Tua (Bittern) Dengan Metode Presipitasi. J. Teknol. Kim. Dan Ind. 2012, 1, 292–297. [Google Scholar]
- Glasstone, S.; Sesonske, A. Nuclear Reactor Engineering, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1994; Volume C, p. 395. [Google Scholar] [CrossRef]
- Grosjean, C.; Herrera Miranda, P.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Murodjon, S.; Yu, X.; Li, M.; Duo, J.; Deng, T. Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water and Geothermal Water. In Thermodynamics and Energy Engineering; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Salafudin, S. Sumberdaya Alam Lithium Indonesia. J. Rekayasa Hijau 2021, 5, 178–187. [Google Scholar] [CrossRef]
- Hartono, M.; Astrayudha, M.A.; Petrus, H.T.; Budhijanto, W.; Sulistyo, H. Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan J. Chem. 2017, 10, 897–903. [Google Scholar] [CrossRef]
- Siekierka, A.; Tomaszewska, B.; Bryjak, M. Lithium capturing from geothermal water by hybrid capacitive deionization. Desalination 2018, 436, 8–14. [Google Scholar] [CrossRef]
- Pambudi, A.S.; Moersidik, S.S.; Karuniasa, M. Analysis of Recent Erosion Hazard Levels and Conservation Policy Recommendations for Lesti Subwatershed, Upper Brantas Watershed. J. Perenc. Pembangunan Indones. J. Dev. Plan. 2021, 5, 71–93. [Google Scholar] [CrossRef]
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Somrani, A.; Hamzaoui, A.H.; Pontie, M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 2013, 317, 184–192. [Google Scholar] [CrossRef]
- Sutijan, S.; Wahyudi, S.; Ismail, M.F.; Mustika, P.C.B.; Astuti, W.; Prasetya, A.; Petrus, H.T.B.M. Forward osmosis to concentrate lithium from brine: The effect of operating conditions (pH and temperature). Int. J. Technol. 2022, 13, 136. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, D.W.; Jin, M.K.; Cho, J. Feasibility study on the application of membrane distillation process to treat high strength wastewater. J. Korean Soc. Water Wastewater 2015, 29, 261–269. [Google Scholar] [CrossRef]
- Chen, V.; Li, H.; Li, D.; Tan, S.; Petrus, H.B. Cleaning strategies for membrane fouled with protein mixtures. Desalination 2006, 200, 198–200. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Sun, W.; Hu, Y.; Tang, H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 7–23. [Google Scholar] [CrossRef]
- Devita, D. Kebijakan Pemerintah terhadap PT. In SAE Dalam Pembangunan Listrik Tenaga Panas Bumi (Studi Kasus Sambirata Kabupaten Banyumas); Technical Report May; Universitas Muhammadiyah: Yogyakarta, Indonesia, 2019. [Google Scholar]
- Li, N.N.G.A.; Fane, W.S.; Ho, W.; Matsuura, T. Advanced Membrane Technology and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–994. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, K.; Chen, R.; Liu, T.; Zhang, Y.; Nan, C.W. Oxide Electrolytes for Lithium Batteries. J. Am. Ceram. Soc. 2015, 98, 3603–3623. [Google Scholar] [CrossRef]
- Luo, J.; Wan, Y. Effects of pH and salt on nanofiltration-a critical review. J. Membr. Sci. 2013, 438, 18–28. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.J.; Wang, H.; Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 2019, 468, 114081. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Sata, T. Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis. J. Membr. Sci. 1994, 93, 117–135. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I. Performance evaluation and boron rejection in a SWRO system under variable operating conditions. Comput. Chem. Eng. 2021, 153, 107441. [Google Scholar] [CrossRef]
- Jiang, A.; Jiangzhou, S.; Cheng, W.; Wang, J.; Ding, Q.; Xing, C. Operational optimization of SWRO process with the consideration of load fluctuation and electricity price. IFAC-PapersOnLine 2015, 48, 598–604. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Nicolini, J.V.; Fernandes, H.L.; Valéria da Fonseca, F. Modeling of ionic transport through nanofiltration membranes considering zeta potential and dielectric exclusion phenomena. Int. J. Eng. Tech. Res. 2017, 7, 2454–4698. [Google Scholar]
- Moura Bernardes, A.; Zoppas Ferreira, J.; Siqueira Rodrigues, M.A. Electrodialysis and Water Reuse; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–144. [Google Scholar] [CrossRef]
- Pérez-González, A.; Ibáñez, R.; Gómez, P.; Urtiaga, A.M.; Ortiz, I.; Irabien, J.A. Nanofiltration separation of polyvalent and monovalent anions in desalination brines. J. Membr. Sci. 2015, 473, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.M.; Chen, Q.B.; Ji, Z.Y.; Liu, J.; Zhao, Y.Y.; Guo, X.F.; Yuan, J.S. Separating and recovering lithium from brines using selective-electrodialysis: Sensitivity to temperature. Chem. Eng. Res. Des. 2018, 140, 116–127. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Moon, S.J.; Jung, J.T.; Wang, H.H.; Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E.; Lee, Y.M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. 2020, 598, 117683. [Google Scholar] [CrossRef]
- Fane, A.G.; Xi, W.; Rong, W. Chapter 7: Membrane filtration processes and fouling. Interface Sci. Technol. 2006, 10, 109–132. [Google Scholar] [CrossRef]
- Nanda, D.; Tung, K.L.; Li, Y.L.; Lin, N.J.; Chuang, C.J. Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening. J. Membr. Sci. 2010, 349, 411–420. [Google Scholar] [CrossRef]
- Silva, F.C. Fouling of Nanofiltration Membranes. In Nanofiltration; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.M.; Fickling, B.G.; Weinman, S.T. Effect of nanopatterning on concentration polarization during nanofiltration. Membranes 2021, 11, 961. [Google Scholar] [CrossRef]
- Szoke, S.; Patzay, G.; Weiser, L. Characteristics of thin-film nanofiltration membranes at various pH-values. Desalination 2003, 151, 123–129. [Google Scholar] [CrossRef]
- Schlosser, Š. Engineering Aspects of Food Biotechnology; Number May; CRC Press: Boca Raton, FL, USA, 2013; pp. 112–132. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, B.; Liu, W.; Li, J.; Gao, C.; Pan, Q. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance. RSC Adv. 2018, 8, 36430–36440. [Google Scholar] [CrossRef] [Green Version]
- Schaep, J.; Vandecasteele, C. Evaluating the charge of nanofiltration membranes. J. Membr. Sci. 2001, 188, 129–136. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Zabolotskii, V.I.; Pis’Menskii, V.F.; Demina, O.A.; Novak, L. Effect of concentration polarization on electrodialytic concentrating of dilute NaCl and NH4NO3 solutions. Russ. J. Electrochem. 2013, 49, 563–570. [Google Scholar] [CrossRef]
- Lonsdale, H. Membrane Technology and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1985; Volume 23, p. 111. [Google Scholar] [CrossRef]
Component | Concentration [ppm] | or | Concentration [M] |
---|---|---|---|
Na+ | 7120 | 0.310 | |
K+ | 2200 | 0.060 | |
Mg2+ | 107 | 0.004 | |
Ca2+ | 401 | 0.010 | |
Li+ | 39 | 0.006 | |
B3+ | 305 | 0.031 |
Ion | Li+ | Na+ | K+ | Mg2+ | Ca2+ | B3+ |
---|---|---|---|---|---|---|
Rh (nm) | 0.382 | 0.358 | 0.331 | 0.428 | 0.412 | 0.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutijan, S.; Darma, S.A.; Hananto, C.M.; Sujoto, V.S.H.; Anggara, F.; Jenie, S.N.A.; Astuti, W.; Mufakhir, F.R.; Virdian, S.; Utama, A.P.; et al. Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization. Membranes 2023, 13, 86. https://doi.org/10.3390/membranes13010086
Sutijan S, Darma SA, Hananto CM, Sujoto VSH, Anggara F, Jenie SNA, Astuti W, Mufakhir FR, Virdian S, Utama AP, et al. Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization. Membranes. 2023; 13(1):86. https://doi.org/10.3390/membranes13010086
Chicago/Turabian StyleSutijan, Sutijan, Stevanus Adi Darma, Christopher Mario Hananto, Vincent Sutresno Hadi Sujoto, Ferian Anggara, Siti Nurul Aisyiyah Jenie, Widi Astuti, Fika Rofiek Mufakhir, Shinta Virdian, Andhika Putera Utama, and et al. 2023. "Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization" Membranes 13, no. 1: 86. https://doi.org/10.3390/membranes13010086
APA StyleSutijan, S., Darma, S. A., Hananto, C. M., Sujoto, V. S. H., Anggara, F., Jenie, S. N. A., Astuti, W., Mufakhir, F. R., Virdian, S., Utama, A. P., & Petrus, H. T. B. M. (2023). Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization. Membranes, 13(1), 86. https://doi.org/10.3390/membranes13010086