Nanovesicles as Vanillin Carriers for Antimicrobial Applications
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Preparation of Nanovesicles
3.2. Nanovesicles Purification
3.3. Lyophilization
3.4. Film Preparation
3.5. Nanovesicles Characterization
3.6. Nanovesicles Antimicrobial Activity Test
3.6.1. Time Kill Assay
3.6.2. Agar Well Diffusion Method
3.7. Films Characterization
3.7.1. Mechanical Properties and Thickness
3.7.2. Color
3.7.3. Optical Transmittance and Transparency Index
3.7.4. Water Solubility
3.8. Statistical Analysis of Data
4. Results and Discussion
4.1. Vesicles Preparation and Characterization
4.1.1. Physical Characterization of Vesicles
4.1.2. Antimicrobial Activity of Nanovesicles Loading Vanillin
4.2. Vesicles Lyophilization
4.3. Films Preparation and Characterization
4.3.1. Mechanical Properties and Thickness
4.3.2. Color
4.3.3. Optical Transmittance and Transparency Index
4.3.4. Water Solubility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Mueller, C. Comparative Analysis of Volatiles in Traditionally Cured Bourbon and Ugandan Vanilla Bean (Vanilla Planifolia) Extracts. J. Agric. Food Chem. 2012, 60, 10433–10444. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanillin: A Review on the Therapeutic Prospects of a Popular Flavouring Molecule. Adv. Tradit. Med. 2021, 21, 415–431. [Google Scholar] [CrossRef]
- Arya, S.S.; Sharma, M.M.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanilla Modulates the Activity of Antibiotics and Inhibits Efflux Pumps in Drug-Resistant Pseudomonas Aeruginosa. Biologia 2021, 76, 781–791. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Soares, A.K.N.; De Sousa, D.P. Overview of the Role of Vanillin on Redox Status and Cancer Development. Oxid. Med. Cell Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brochado, A.R.; Telzerow, A.; Bobonis, J.; Banzhaf, M.; Mateus, A.; Selkrig, J.; Huth, E.; Bassler, S.; Zamarreño Beas, J.; Zietek, M.; et al. Species-Specific Activity of Antibacterial Drug Combinations. Nature 2018, 559, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, K.; Paul, D.; Kweon, J.H. Inhibition of Quorum Sensing Mechanism. Environ. Eng. Sci. 2009, 26, 1359–1363. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation Techniques for Compounds and Products with Antioxidant and Antimicrobial Activity—A Critical View. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef]
- Thabet, Y.; Elsabahy, M.; Eissa, N.G. Methods for Preparation of Niosomes: A Focus on Thin-Film Hydration Method. Methods 2022, 199, 9–15. [Google Scholar] [CrossRef]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent Advances in Non-Ionic Surfactant Vesicles (Niosomes): Fabrication, Characterization, Pharmaceutical and Cosmetic Applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Ag Seleci, D.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef]
- Smith, M.C.; Crist, R.M.; Clogston, J.D.; McNeil, S.E. Zeta Potential: A Case Study of Cationic, Anionic, and Neutral Liposomes. Anal. Bioanal. Chem. 2017, 409, 5779–5787. [Google Scholar] [CrossRef]
- Mal, A.; Bag, S.; Ghosh, S.; Moulik, S.P. Physicochemistry of CTAB-SDS Interacted Catanionic Micelle-Vesicle Forming System: An Extended Exploration. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 553, 633–644. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, Q.; Hu, H.; He, Z.; Wu, T.; Guo, T.; Feng, N. Sodium Dodecyl Sulfate Improved Stability and Transdermal Delivery of Salidroside-Encapsulated Niosomes via Effects on Zeta Potential. Int. J. Pharm. 2020, 580, 119183. [Google Scholar] [CrossRef] [PubMed]
- Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. Bionanoscience 2022, 12, 274–291. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Marchianò, V.; Matos, M.; Serrano-Pertierra, E.; Gutiérrez, G.; Blanco-López, M.C. Vesicles as Antibiotic Carrier: State of Art. Int. J. Pharm. 2020, 585. [Google Scholar] [CrossRef]
- Langford, A.; Bhatnagar, B.; Walters, R.; Tchessalov, S.; Ohtake, S. Drying Technologies for Biopharmaceutical Applications: Recent Developments and Future Direction. Dry. Technol. 2018, 36, 677–684. [Google Scholar] [CrossRef]
- Franzé, S.; Selmin, F.; Samaritani, E.; Minghetti, P.; Cilurzo, F. Lyophilization of Liposomal Formulations: Still Necessary, Still Challenging. Pharmaceutics 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-Based Composite Films and Their Application in Food Packaging: A Review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Preparation of Antimicrobial and Antioxidant Gelatin/Curcumin Composite Films for Active Food Packaging Application. Colloids Surf. B Biointerfaces 2020, 188, 110761. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, Physicochemical and Biological Evaluation of Quercetin Based Chitosan-Gelatin Film for Food Packaging. Carbohydr. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef] [PubMed]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to Present: The State of the Art. Adv. Colloid Interface Sci. 2014, 205, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and Characterization of Niosomes Containing Resveratrol. J. Food Eng. 2013, 117, 227–234. [Google Scholar] [CrossRef]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R.; Gershater, M.; Kiga, D.; Marken, J.; Sanchania, V.; et al. Robust Estimation of Bacterial Cell Count from Optical Density. Commun. Biol. 2020, 3, 512. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Preparation of Edible Films with Lactobacillus Plantarum and Lactobionic Acid Produced by Sweet Whey Fermentation. Membranes 2022, 12, 115. [Google Scholar] [CrossRef]
- Sáez-Orviz, S.; Marcet, I.; Weng, S.; Rendueles, M.; Díaz, M. PLA Nanoparticles Loaded with Thymol to Improve Its Incorporation into Gelatine Films. J. Food Eng. 2020, 269, 109751. [Google Scholar] [CrossRef]
- Okore, V.; Attama, A.; Ofokansi, K.; Esimone, C.O.; Onuigbo, E.B. Formulation and Evaluation of Niosomes. Indian J. Pharm. Sci. 2011, 73, 323–328. [Google Scholar] [CrossRef]
- Alyami, H.; Abdelaziz, K.; Dahmash, E.Z.; Iyire, A. Nonionic Surfactant Vesicles (Niosomes) for Ocular Drug Delivery: Development, Evaluation and Toxicological Profiling. J. Drug Deliv. Sci. Technol. 2020, 60, 102069. [Google Scholar] [CrossRef]
- Fang, J.Y.; Hong, C.T.; Chiu, W.T.; Wang, Y.Y. Effect of Liposomes and Niosomes on Skin Permeation of Enoxacin. Int. J. Pharm. 2001, 219, 61–72. [Google Scholar] [CrossRef]
- Chandu Pola, V.; Arunachalam, A.; Jeganath, S.; Yamini, K.; Tharangini, K.; Chaitanya, G. Niosomes: A Novel Drug Delivery System Liposomes. Int. J. Nov. trends Pharm. Sci. 2012, 2, 15. [Google Scholar]
- Estupiñan, O.R.; Garcia-Manrique, P.; del Carmen Blanco-Lopez, M.; Matos, M.; Gutiérrez, G. Vitamin D3 Loaded Niosomes and Transfersomes Produced by Ethanol Injection Method: Identification of the Critical Preparation Step for Size Control. Foods 2020, 9, 1367. [Google Scholar] [CrossRef]
- García-Manrique, P.; Matos, M.; Gutiérrez, G.; Estupiñán, O.R.; Blanco-López, M.C.; Pazos, C. Using Factorial Experimental Design to Prepare Size-Tuned Nanovesicles. Ind. Eng. Chem. Res. 2016, 55, 9164–9175. [Google Scholar] [CrossRef] [Green Version]
- García-Manrique, P.; Machado, N.D.; Fernández, M.A.; Blanco-lópez, M.C.; Matos, M.; Gutiérrez, G. Effect of Drug Molecular Weight on Niosomes Size and Encapsulation efficiency. Colloids Surf. B Biointerfaces 2020, 186, 110711. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar] [CrossRef]
- Bozó, T.; Mészáros, T.; Mihály, J.; Bóta, A.; Kellermayer, M.S.Z.; Szebeni, J.; Kálmán, B. Aggregation of PEGylated Liposomes Driven by Hydrophobic Forces. Colloids Surf. B Biointerfaces 2016, 147, 467–474. [Google Scholar] [CrossRef]
- Talebi, V.; Ghanbarzadeh, B.; Hamishehkar, H.; Pezeshki, A.; Ostadrahimi, A. Effects of Different Stabilizers on Colloidal Properties and Encapsulation Efficiency of Vitamin D3 Loaded Nano-Niosomes. J. Drug Deliv. Sci. Technol. 2021, 61, 101284. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Vyas, S.P. Non-Ionic Surfactant Based Vesicles (Niosomes) in Drug Delivery. Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- Erady, V.; Mascarenhas, R.J.; Satpati, A.K. Highly Efficient and Selective Quantification of Vanillin in Food, Beverages and Pharmaceuticals Using Surfactant Modified Carbon Paste Sensor. Sensors Int. 2020, 1, 100023. [Google Scholar] [CrossRef]
- Trenkenschuh, E.; Friess, W. Freeze-Drying of Nanoparticles: How to Overcome Colloidal Instability by Formulation and Process Optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef]
- Shah, S.K.; Chatterjee, S.K.; Bhattarai, A. Micellization of Cationic Surfactants in Alcohol—Water Mixed Solvent Media. J. Mol. Liq. 2016, 222, 906–914. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings-A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
Membrane Components | Molar Fraction | |
---|---|---|
I | Span 60, Cholesterol | 0.67; 0.33 |
II | Span 60, Cholesterol, CTAB | 0.45; 0.22; 0.33 |
III | Span 60, Cholesterol, SDS | 0.45; 0.22; 0.33 |
Formulation | Size (nm) | PDI | Z-Pot (mV) | EE (%) | |||||
---|---|---|---|---|---|---|---|---|---|
EIM | TFH | EIM | TFH | EIM | TFH | EIM | TFH | ||
Empty vesicles | Niosomes | 106 ± 12 | 255 ± 42 | 0.11 ± 0.01 | 0.54 ± 0.23 | −13 ± 3 | −12 ± 7 | - | - |
Niosomes + CTAB | 164 ± 18 | 51 ± 35 | 0.07 ± 0.02 | 0.49 ± 0.06 | 28 ± 5 | 37 ± 6 | - | - | |
Niosomes + SDS | 142 ± 13 | 79 ± 31 | 0.12 ±0.02 | 0.51 ± 0.26 | −37 ± 4 | −43 ± 7 | - | - | |
Loaded vesicles | Niosomes | 191 ± 28 | 319 ± 40 | 0.06 ± 0.02 | 0.17 ± 0.03 | −11 ± 2 | −12 ± 3 | 14 ± 3 | 41 ± 7 |
Niosomes + CTAB | 235 ± 32 | 257 ± 38 | 0.06 ± 0.05 | 0.22 ± 0.12 | 31 ± 4 | 41 ± 6 | 18 ± 4 | 35 ± 6 | |
Niosomes + SDS | 157 ± 13 | 93 ± 32 | 0.07 ± 0.02 | 0.45 ± 0.16 | −42 ± 3 | −49 ± 3 | 13 ± 2 | 25 ± 5 |
Samples | Diameter (cm) | Samples | Diameter (cm) |
---|---|---|---|
Niosomes | 0.96 | Loaded niosomes | 1.33 |
Niosomes + CTAB | 1.00 | Loaded niosomes + CTAB | 1.03 |
Niosomes + SDS | 1.03 | Loaded niosomes + SDS | 1.42 |
Films with | Thickness(mm) | PS (N/mm) | PD (%) | WI | Transparency Index | Solubility (%) | |
---|---|---|---|---|---|---|---|
Niosomes | 1.1 ± 0.1 ab | 62 ± 10 b | 176 ± 3 b | 80 ± 5 ef | 0.18 ± 0.04 g | 68 ± 1 i | |
Non-loaded vesicles | Niosomes + CTAB | 1.07 ± 0.08 ab | 79 ± 7 bc | 187 ± 31 b | 82 ± 4 f | 0.16 ± 0.01 g | 65 ± 11 i |
Niosomes + SDS | 1.06 ± 0.09 ab | 90 ± 11 c | 237 ± 9 c | 78.8 ± 0.5 ef | 0.3 ± 0.1 h | 62 ± 4 i | |
Niosomes | 1.17 ± 0.08 a | 68 ± 11 b | 175 ± 2 b | 72 ± 2 de | 0.17 ± 0.03 g | 65 ± 3 i | |
Loaded vesicles | Niosomes + CTAB | 1.1 ± 0.1 ab | 77 ± 14 bc | 177 ± 20 b | 68 ± 9 d | 0.17 ± 0.03 g | 67.5 ± 0.6 i |
Niosomes + SDS | 0.96 ± 0.07 b | 31 ± 9 a | 132 ± 22 a | 77.3 ± 0.8 ef | 0.27 ± 0.07 gh | 99 ± 8 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchianò, V.; Matos, M.; López, M.; Weng, S.; Serrano-Pertierra, E.; Luque, S.; Blanco-López, M.C.; Gutiérrez, G. Nanovesicles as Vanillin Carriers for Antimicrobial Applications. Membranes 2023, 13, 95. https://doi.org/10.3390/membranes13010095
Marchianò V, Matos M, López M, Weng S, Serrano-Pertierra E, Luque S, Blanco-López MC, Gutiérrez G. Nanovesicles as Vanillin Carriers for Antimicrobial Applications. Membranes. 2023; 13(1):95. https://doi.org/10.3390/membranes13010095
Chicago/Turabian StyleMarchianò, Verdiana, Maria Matos, Miriam López, Shihan Weng, Esther Serrano-Pertierra, Susana Luque, M. Carmen Blanco-López, and Gemma Gutiérrez. 2023. "Nanovesicles as Vanillin Carriers for Antimicrobial Applications" Membranes 13, no. 1: 95. https://doi.org/10.3390/membranes13010095
APA StyleMarchianò, V., Matos, M., López, M., Weng, S., Serrano-Pertierra, E., Luque, S., Blanco-López, M. C., & Gutiérrez, G. (2023). Nanovesicles as Vanillin Carriers for Antimicrobial Applications. Membranes, 13(1), 95. https://doi.org/10.3390/membranes13010095