CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Mathematical Model and Simulation
2.1.1. Hydrodynamic Model
2.1.2. Radiation Transport Model
2.1.3. Simulations
2.1.4. Operating Conditions
3. Experimental Procedures
3.1. Fabrication and Characterization of Membranes
3.2. Experimental Setup and Performance Tests
4. Results and Discussion
4.1. Grid Independence Test for the Batch Reactor
4.2. Simulation of Physical Mixing Inside the Batch Reactor
4.3. Velocity Profiles Inside the Batch Reactor
4.4. Role of the Boundary Layer on Mass Transfer of Naproxen in the Batch and Membrane Separation Processes
4.5. Effects of Light Distribution
4.6. Experimental Performance Studies
4.6.1. UV-Vis Spectra of Photolysis and Photocatalytic Degradation of Naproxen in the Batch Reactor
4.6.2. Effects of Time on Naproxen Degradation Performance
4.6.3. Effects of pH on the Degradation of Naproxen
4.6.4. Effects of a Water Matrix on Remediation of Naproxen
4.6.5. Effects of Mixing Velocity and Flow Rate on the Removal of Naproxen
4.6.6. Effects of Light Intensity on the Degradation of Naproxen
4.6.7. Kinetics Studies for the Degradation of Naproxen
4.6.8. Application of IPMS on the Removal of Naproxen
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Romay, M.; Diban, N.; Rivero, M.J.; Urtiaga, A.; Ortiz, I. Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes. Catalysts 2020, 10, 570. [Google Scholar] [CrossRef]
- Olatunde, O.C.; Onwudiwe, D.C. UV-light assisted activation of persulfate by rGO-Cu3BiS3 for the degradation of diclofenac. Results Chem. 2022, 4, 100273. [Google Scholar] [CrossRef]
- Brunetti, A.; Zito, P.F.; Giorno, L.; Drioli, E.; Barbieri, G. Membrane reactors for low temperature applications: An overview. Chem. Eng. Process. Process Intensif. 2018, 124, 282–307. [Google Scholar] [CrossRef]
- Chakachaka, V.; Tshangana, C.; Mahlangu, O.; Mamba, B.; Muleja, A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. Membranes 2022, 12, 745. [Google Scholar] [CrossRef]
- Gao, Q.; Duan, L.; Liu, J.; Zhang, H.; Zhao, Y. Evaluation and optimization of reserve osmosis pretreatment technology using the modified intermediate blocking model. J. Clean. Prod. 2023, 417, 138029. [Google Scholar] [CrossRef]
- Deba, S.A.H.; Wols, B.A.; Yntema, D.R.; Lammertink, R.G.H. Transport and surface reaction model of a photocatalytic membrane during the radical filtration of methylene blue. Chem. Eng. Sci. 2022, 254, 117617. [Google Scholar] [CrossRef]
- Izumi, I.; Dunn, W.W.; Wilbourn, K.O.; Fan, F.R.F.; Bard, A.J. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized TiO2 powders. J. Phys. Chem. 1980, 84, 3207–3210. [Google Scholar] [CrossRef]
- Martín-Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps. Appl. Catal. B 2017, 215, 1–7. [Google Scholar] [CrossRef]
- Casado, C.; Timmers, R.; Sergejevs, A.; Clarke, C.T.; Allsopp, D.W.E.; Bowen, C.R.; van Grieken, R.; Marugán, J. Design and validation of an LED-based high-intensity photocatalytic reactor for quantifying activity measurements. Chem. Eng. J. 2017, 327, 1043–1055. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W. Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2–SiO2/CoFe2O4 nanoparticles. Sep. Purif. Technol. 2019, 209, 764–775. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Lam, S.S.; Park, Y.K.; Kim, S.C.; Jung, S.C. Diclofenac degradation properties of a La-doped visible light-responsive TiO2 photocatalyst. Sustain. Chem. Pharm. 2022, 25, 100564. [Google Scholar] [CrossRef]
- Regmi, C.; Lotfi, S.; Espíndola, J.C.; Fischer, K.; Schulze, A.; Schäfer, A.I. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-coated PES membrane. Catalysts 2020, 10, 725. [Google Scholar] [CrossRef]
- Tugaoen, H.O.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci. Total Environ. 2018, 613–614, 1331–1338. [Google Scholar] [CrossRef]
- Haji, M.; Sanaullah, K.; Faridah, S.; Baini, R.; Fong, S.; Ragai, A.; Rigit, H.; Anwar, K.; Said, M.; Khan, A. Photo-oxidation of pre-treated palm oil mill Effluent using cylindrical column immobilized photoreactor. Process. Saf. Environ. Prot. 2018, 117, 180–189. [Google Scholar] [CrossRef]
- Deba, S.A.H.; Wols, B.A.; Yntema, D.R.; Lammertink, R.G.H. Photocatalytic ceramic membrane: Effect of the illumination intensity and distribution. J. Photochem. Photobiol. A Chem. 2023, 437, 114469. [Google Scholar] [CrossRef]
- Khodadadian, F.; Poursaeidesfahani, A.; Li, Z.; van Ommen, J.R.; Stankiewicz, A.I.; Lakerveld, R. Model-Based Optimization of a Photocatalytic Reactor with Light-Emitting Diodes. Chem. Eng. Technol. 2016, 39, 1946–1954. [Google Scholar] [CrossRef]
- Wang, T.; de Vos, W.M.; de Grooth, J. CoFe2O4-peroxymonosulfate based catalytic UF and NF polymeric membranes for naproxen removal: The role of residence time. J. Memb. Sci. 2022, 646, 120209. [Google Scholar] [CrossRef]
- Chakachaka, V.M.; Mahlangu, O.T.; Tshangana, C.S.; Mamba, B.B.; Muleja, A.A. Highly adhesive CoFe2O4 nanoengineered PES membranes for salts and Naproxen removal and antimicrobial activities. J. Membr. Sci. 2023, 676, 121612. [Google Scholar] [CrossRef]
- Daraei, P.; Siavash, S.; Ghaemi, N.; Salehi, E.; Ali, M.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI / Fe 3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Memb. Sci. 2012, 415–416, 250–259. [Google Scholar] [CrossRef]
- Nagy, E. Mass Transfer through a Convection Flow Catalytic Membrane Layer with Dispersed Nanometer-Sized Catalyst. Ind. Eng. Chem. Res. 2009, 49, 1057–1062. [Google Scholar] [CrossRef]
- Coroneo, M.; Montante, G.; Paglianti, A.; Magelli, F. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations. Comput. Chem. Eng. 2011, 35, 1959–1968. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Liu, Z.; Yang, J.C.; Jin, Y.; Cheng, Y. Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways, and mechanism evaluation. Chem. Eng. Sci. 2010, 65, 4511–4518. [Google Scholar] [CrossRef]
- Montante, G.; Magelli, F. Liquid Homogenization Characteristics in Vessels Stirred with Multiple Rushton Turbines Mounted at Different Spacings: CFD Study and Comparison with Experimental Data. Chem. Eng. Res. Des. 2004, 82, 1179–1187. [Google Scholar] [CrossRef]
- Yeoh, S.; Papadakis, G.; Yianneskis, M. Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci. 2005, 60, 2293–2302. [Google Scholar] [CrossRef]
- Farhana, A.T.; Raman, A.; Aziz Daud, W.; Mohd, A. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation. Sci. World J. 2014, 17, 348974. [Google Scholar] [CrossRef]
- Hartmann, H.; Derksen, J.J.; Van den Akker, H.E.A. Turbulent flow of shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index. Chem. Eng. Res. Des. 2010, 88, 827–843. [Google Scholar] [CrossRef]
- Mittal, G.; Issao Kikugawa, R. Computational fluid dynamics simulation of a stirred tank reactor. Mater. Today Proc. 2021, 46, 11015–11019. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Xie, T.; Wang, B.; An, L. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery. Int. J. Heat Mass Transf. 2017, 112, 643–648. [Google Scholar] [CrossRef]
- Akach, J.; Kabuba, J.; Ochieng, A. Simulation of the Light Distribution in a Solar Photocatalytic Bubble Column Reactor Using the Monte Carlo Method. Ind. Eng. Chem. Res. 2020, 59, 17708–17719. [Google Scholar] [CrossRef]
- Gong, S.; Ding, C.; Liu, J.; Fu, K.; Pan, Y.; Shi, J.; Deng, H. Degradation of Naproxen by UV-irradiation in the presence of nitrate: Efficiency, mechanism, products, and toxicity change. Chem. Eng. J. 2022, 430, 133016. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nackaerts, R.; Thwala, J.M.; Mamba, B.B.; Verliefde, A.R.D. Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J. Memb. Sci. 2017, 524, 43–55. [Google Scholar] [CrossRef]
- Zhao, Y.; Daun, L.; Hermanowicz, S. Influence of water transport on membrane internal conductive structure in forward osmosis microbial fuel cell. J. Mol. Liq. 2023, 380, 121704. [Google Scholar] [CrossRef]
- Visan, A.; Van Ommen, J.R.; Kreutzer, M.T.; Lammertink, R.G.H. Photocatalytic Reactor Design: Guidelines for Kinetic Investigation. Ind. Eng. Chem. Res. 2019, 58, 5349–5357. [Google Scholar] [CrossRef]
- Subhi, N.; Henderson, R.; Stuetz, R.M.; Chen, V.; Le-Clech, P. Potential of fluorescence excitation-emission matrix (FEEM) analysis for foulant characterization in membrane bioreactors (MBRs). Desalination Water Treat. 2011, 34, 167–172. [Google Scholar] [CrossRef]
- Marais, S.S.; Ndlangamandla, N.G.; Bopape, D.A.; Strydom, W.F.; Moyo, W.; Chaukura, N.; Kuvarega, A.T.; de Kock, L.; Mamba, B.B. TAM Msagati and TI Nkambule, Natural Organic Matter (Nom) in South African Waters Volume I: Nom Fractionation, Characterisation and Formation of Disinfection By-Products a Report to the Water Research Commission. 2018. Available online: https://www.wrc.org.za/ (accessed on 2 October 2023).
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1998; 704p. [Google Scholar]
- Teekateerawej, S.; Nishino, J.; Nosaka, Y. Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics. J. Photochem. Photobiol. A Chem. 2006, 179, 263–268. [Google Scholar] [CrossRef]
- Sutisna; Rokhmat, M.; Wibowo, E.; Khairurrijal; Abdullah, M. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination. Sustain. Environ. Res. 2017, 27, 172–180. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H.; Beygzadeh, M. Novel high flux antifouling nano fi ltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 2014, 349, 145–154. [Google Scholar] [CrossRef]
- Chen, Y.; Giralt, F.; Cohen, Y. Hydraulic Resistance and Protein Fouling Resistance of a Zirconia Membrane with a Tethered PVP Layer. Water 2021, 13, 951. [Google Scholar] [CrossRef]
- Dang, H.T.; Narbaitz, R.M.; Matsuura, T.; Khulbe, K.C. A Comparison of Commercial and Experimental Ultrafiltration Membranes via Surface Property Analysis and Fouling Tests A Comparison of Commercial. Water Qual. Res. J. 2006, 41, 84–93. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nackaerts, R.; Mamba, B.B.; Verliefde, A.R.D. Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater. Water Sci. Technol. 2017, 76, 501–514. [Google Scholar] [CrossRef]
- Patala, R.; Mahlangu, O.T.; Nyoni, H.; Mamba, B.B.; Kuvarega, A.T. In Situ Generation of Fouling Resistant Ag/Pd Modified PES Membranes for Treatment of Pharmaceutical Wastewater. Membranes 2022, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.; Fe, O.; Siregar, J.; Luh, N.; Septiani, W. Effect of Template on Structural and Band Gap Behaviors of Magnetite Nanoparticles Effect of Template on Structural and Band Gap Behaviors of Magnetite Nanoparticles. J. Phys. 2018, 1093, 012020. [Google Scholar]
- Tshangana, C.S.; Muleja, A.A.; Nxumalo, E.N.; Mhlanga, S.D. Poly(ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum dots with antimicrobial activity. Environ. Sci. Pollution Res. 2020, 27, 26845–26855. [Google Scholar] [CrossRef] [PubMed]
Flux (L.m−2.h−1) | Zeta Potential | ||||
---|---|---|---|---|---|
Time (min) | Synthetic Water | Before Chlorination | Before Clarifiers | pH | mV |
15 | 0.2 | 0.2 | 3.65 0.2 | 5 | |
30 | 0.3 | 0.2 | 0.4 | 6.8 | .2 |
45 | 0.3 | 0.2 | 0.05 | 8.3 |
Water Parameter | Before Treatment | After IPMS Treatment |
---|---|---|
pH at | 6.8 ± 0.6 | 6.8 ± 0.23 |
TDS (ppm) | 63.8 ± 4.2 | 28.9 ± 1.2 |
Turbidity (NTU) | 6.2 ± 0.02 | 0 ± 0.6 |
TOC (mg C.L−1) | 10.4 ± 1.2 | 4.3 ± 0.4 |
Electrical conductivity (mS/m) | 119 ± 4 | 67.6 ± 1.5 |
Naproxen (mg/L) | 5 ± 0.01 | 0.14 ± 0.01 |
Parameters | Degradation | Rejection |
---|---|---|
Illuminance system | Solar simulator | - |
Light intensity (w/m2) | 2.5 | - |
Residence time (m) | 150 | - |
Flow rate (L/m) | - | 6.8 |
Active membrane area (m2) | 0.0028 | 0.0028 |
STY (mol/cm2.s) | - | |
PSTY (mol/W.s) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakachaka, V.M.; Tshangana, C.S.; Mamba, B.B.; Muleja, A.A. CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment. Membranes 2023, 13, 827. https://doi.org/10.3390/membranes13100827
Chakachaka VM, Tshangana CS, Mamba BB, Muleja AA. CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment. Membranes. 2023; 13(10):827. https://doi.org/10.3390/membranes13100827
Chicago/Turabian StyleChakachaka, Vimbainashe Mercy, Charmaine Sesethu Tshangana, Bhekie Brilliance Mamba, and Adolph Anga Muleja. 2023. "CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment" Membranes 13, no. 10: 827. https://doi.org/10.3390/membranes13100827
APA StyleChakachaka, V. M., Tshangana, C. S., Mamba, B. B., & Muleja, A. A. (2023). CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment. Membranes, 13(10), 827. https://doi.org/10.3390/membranes13100827