Ongoing Progress on Pervaporation Membranes for Ethanol Separation
Abstract
:1. Introduction
2. Polymeric Membranes
Polymer | Feed (wt.% Ethanol) | Temperature (°C) | Separation Factor | Flux (g/m2h) | Ref. |
---|---|---|---|---|---|
Polyacrylonitrile-polyvinylpyrrolidone | 96 | 20 | 3.2 | 2200 | [58] |
Poly(acrylic acid-co-acrylonitrile) | 82 | 15 | 877 | 13 | [59] |
Poly(vinyl chloride) | 96 | 40 | 63 | 3 | [60] |
Cellulose acetate | 96 | 60 | 5.9 | 200 | [61] |
PVA/25% TEOS, annealed at 160 °C | 85 | 40 | 329 | 5 | [61] |
PVA/25% TEOS, annealed at 130 °C | 85 | 40 | 893 | 4 | [61] |
Chitosan | 96 | 40 | 2208 | 4 | [62] |
2.1. Hydrophilic Polymers
2.2. Hydrophobic Polymers
3. Inorganic Membranes
3.1. Zeolite Membranes
3.2. Silica Membranes
4. Mixed-Matrix Membranes
4.1. Zeolite MMMs
4.2. Silica MMMs
4.3. MOF MMMs
Polymer | MOF | Feed Composition (EtOH/H2O) | T °C | Flux (g/m2h) | Separation Factor | Selectivity | Reference |
---|---|---|---|---|---|---|---|
CS | ZIF-7 | 90/10 | 25 | 322 | 2812 | N/A | [121] |
CS | Al-MOF | 90/10 | 25 | 458 | 2741 | N/A | [123] |
CS | DUT-5 | 90/10 | 25 | 378 | 3429 | N/A | [124] |
CS | MOF-801 | 90/10 | 70 | 1937 | 2156 | 2641.14 | [125] |
PVA | ZIF-8 | 80/20 | 25 | 486 | 4725 | N/A | [126] |
PVA | Zr-MOF | 90/10 | 30 | 46.3 | 46.3 | 64.63 | [127] |
SA | ZIF-8 | 90/10 | 76 | 879 | 678 | 812.48 | [128] |
SA | EuBTB | 90/10 | 76 | 1996 | 1160 | 1374..64 | [129] |
4.4. COF MMMs
5. Conclusions and Future Outlook
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | membrane area (m2) |
D | diffusion coefficient (10−8 cm2/s) |
J | permeation flux (g/m2h) |
l | membrane thickness (μm) |
P | permeability (g m/m2h kPa) |
P/l | permeance (g/m2h kPa) |
S | sorption coefficient (cm3(STP)/cm3 atm) |
x | weight percent of components in the feed |
y | weight percent of components in the permeate |
Greek Letter | |
α | selectivity |
β | separation factor |
δ | solubility parameter (MPa1/2) |
Abbreviations | |
2D | two-dimensional |
BTESE | 1,2-bis(triethoxysilyl)ethane |
COF | covalent-organic framework |
CS | chitosan |
DMC | dimethyl carbonate |
ECN | Energy Research Centre of the Netherlands |
GO | graphene oxide |
MMM | mixed-matrix membrane |
MOF | metal-organic framework |
MTBE | methanol/methyl tert-butyl ether |
NF | nanofiltration |
PA | polyamide |
PAN | poly(acrylonitrile) |
PBI | polybenzimidazole |
PDC | 3,5-pyrazoledicarboxylic acid |
PDMS | polydimethylsiloxane |
PE | polyether |
PEBA | poly(ether-block-amide) |
PEC | polyelectrolyte complex |
PES | poly(ether sulfones) |
PI | polyimide |
PIMs | polymers of intrinsic microporosity |
PMPS | polymethylphenysiloxane |
POMS | polyoctylmethylsiloxane |
POSS | polyhedral oligomeric silsesquioxanes |
PTMSP | poly(1-trimethysilyl-1-propyne) |
PU | polyurethane |
PVA | polyvinyl alcohol |
SA | sodium alginate |
SNW-1 | schiff base network framework |
TDC | 2,5-thiophenedicarboxylic acid |
TEOS | tetraethylorthosilicate |
TFC | thin-film composite |
TMS | glycidyloxypropyltrimethoxysilane |
References
- Fang, L.J.; Chen, J.H.; Yang, Q.; Lin, W.W.; Lin, Q.J.; He, Y.S.; Zhuo, Y.Z. S-ZIF-8/PEBA/ZIF-8 Pervaporation Membrane with in Situ Growing of ZIF-8 Active Layer on the Surface Owing Outstanding Phenol Enrichment Performance. J. Taiwan. Inst. Chem. Eng. 2022, 134, 104356. [Google Scholar] [CrossRef]
- Chaudhari, S.; Chang, D.W.; Cho, K.Y.; Shon, M.Y.; Kwon, Y.S.; Nam, S.E.; Park, Y.I. Polyvinyl Alcohol and Graphene Oxide Blending Surface Coated Alumina Hollow Fiber (AHF) Membrane for Pervaporation Dehydration of Epichlorohydrin(ECH)/Isopropanol(IPA)/Water Ternary Feed Mixture. J. Taiwan. Inst. Chem. Eng. 2020, 114, 103–114. [Google Scholar] [CrossRef]
- Shen, K.; Cheng, C.; Zhang, T.; Wang, X. High Performance Polyamide Composite Nanofiltration Membranes via Reverse Interfacial Polymerization with the Synergistic Interaction of Gelatin Interlayer and Trimesoyl Chloride. J. Membr. Sci. 2019, 588, 117192. [Google Scholar] [CrossRef]
- Raaijmakers, M.J.T.; Benes, N.E. Current Trends in Interfacial Polymerization Chemistry. Prog. Polym. Sci. 2016, 63, 86–142. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Pervaporation: The Emerging Technique for Extracting Aroma Compounds from Food Systems. J. Food Eng. 2019, 253, 27–39. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; Figoli, A. Chemical and Bio-Chemical Reactions Assisted by Pervaporation Technology. Crit. Rev. Biotechnol. 2019, 39, 884–903. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; Fíla, V.; Drioli, E.; Figoli, A. Matrimid®5218 Dense Membrane for the Separation of Azeotropic MeOH-MTBE Mixtures by Pervaporation. Sep. Purif. Technol. 2018, 199, 27–36. [Google Scholar] [CrossRef]
- Zhu, T.; Xia, Q.; Zuo, J.; Liu, S.; Yu, X.; Wang, Y. Recent Advances of Thin Film Composite Membranes for Pervaporation Applications: A Comprehensive Review. Adv. Membr. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. A Critical Review on Electrospun Membranes Containing 2D Materials for Seawater Desalination. Desalination 2023, 555, 116528. [Google Scholar] [CrossRef]
- Janjhi, F.A.; Chandio, I.; Jamwery, D.; Memon, A.A.; Thebo, K.H.; Boczkaj, G.; Vatanpour, V.; Castro-Muñoz, R. MoS2-containing composite membranes for separation of environmental energy-relevant liquid and gas mixtures: A comprehensive review. Chem. Eng. Res. Des. 2023, 199, 327–347. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Valdez, J.; Ahmad, M.Z. High-Performance Pervaporation Chitosan-Based Membranes: New Insights and Perspectives. Rev. Chem. Eng. 2021, 37, 959–974. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Agrawal, K.V.; Coronas, J. Ultrathin Permselective Membranes: The Latent Way for Efficient Gas Separation. RSC Adv. 2020, 10, 12653–12670. [Google Scholar] [CrossRef]
- Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, L.; Peng, L.; Cai, C.; Zhang, C.; Wang, X.; Gu, X. Preparation and Characterization of High Performance CHA Zeolite Membranes from Clear Solution. J. Membr. Sci. 2017, 527, 51–59. [Google Scholar] [CrossRef]
- Raza, W.; Wang, J.; Yang, J.; Tsuru, T. Progress in Pervaporation Membranes for Dehydration of Acetic Acid. Sep. Purif. Technol. 2021, 262, 118338. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, F.; Wang, M.; Li, W.; Song, Y.; Liu, G.; Yang, H.; Gao, B.; Wu, H.; Jiang, Z. Hybrid Membranes for Pervaporation Separations. J. Membr. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Heydari, H.; Salehian, S.; Amiri, S.; Soltanieh, M.; Musavi, S.A. UV-Cured Polyvinyl Alcohol-MXene Mixed Matrix Membranes for Enhancing Pervaporation Performance in Dehydration of Ethanol. Polym. Test. 2023, 123, 108046. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; de la Iglesia, Ó.; Fíla, V.; Téllez, C.; Coronas, J.; Figoli, A. Graphene Oxide—Filled Polyimide Membranes in Pervaporative Separation of Azeotropic Methanol–MTBE Mixtures. Sep. Purif. Technol. 2019, 224, 265–272. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. A Review on Inorganic Membranes for Desalination and Wastewater Treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.; Li, Y.; Chen, X.; Yao, Y.; Ren, S.; Li, M.; Wu, Y.; An, C. Electrically Conductive Inorganic Membranes: A Review on Principles, Characteristics and Applications. Chem. Eng. J. 2022, 427, 131987. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fíla, V. Progress on Incorporating Zeolites in Matrimid® 5218 Mixed Matrix Membranes towards Gas Separation. Membranes 2018, 8, 30. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fila, V.; Ahmad, M. Enhancing the CO2 Separation Performance of Matrimid 5218 Membranes for CO2/CH4 Binary Mixtures. Chem. Eng. Technol. 2019, 43, 645–654. [Google Scholar] [CrossRef]
- Majumdar, S.; Tokay, B.; Martin-Gil, V.; Campbell, J.; Castro-Muñoz, R.; Ahmad, M.Z.; Fila, V. Mg-MOF-74/Polyvinyl Acetate (PVAc) Mixed Matrix Membranes for CO2 Separation. Sep. Purif. Technol. 2020, 238, 116411. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Pelletier, H.; Martin-Gil, V.; Castro-Muñoz, R.; Fila, V. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO2/CH4 Separation. Membranes 2018, 8, 67. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W. Pervaporation Membrane Materials: Recent Trends and Perspectives. J. Membr. Sci. 2021, 636, 119557. [Google Scholar] [CrossRef]
- Wang, W.; Yan, X.; Liu, X. Polycrystalline Metal–Organic Framework Membranes for Pervaporation. Ind. Eng. Chem. Res. 2023, 62, 10787–10799. [Google Scholar] [CrossRef]
- Korelskiy, D.; Leppäjärvi, T.; Zhou, H.; Grahn, M.; Tanskanen, J.; Hedlund, J. High Flux MFI Membranes for Pervaporation. J. Membr. Sci. 2013, 427, 381–389. [Google Scholar] [CrossRef]
- Oh, B.; Kim, K.; Kwon, Y.S.; Park, Y.I.; Park, H.; Koh, D.Y. Pervaporation Dehydration of Ethylene Glycol/Water Mixture via Hydrophilic Polymer of Intrinsic Microporosity (PIM) Derivatives. J. Membr. Sci. 2023, 680, 121707. [Google Scholar] [CrossRef]
- Zhuang, Y.; Si, Z.; Pang, S.; Wu, H.; Zhang, X.; Qin, P. Recent Progress in Pervaporation Membranes for Furfural Recovery: A Mini Review. J. Clean. Prod. 2023, 396, 136481. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Breakthroughs on Tailoring Pervaporation Membranes for Water Desalination: A Review. Water Res. 2020, 187, 116428. [Google Scholar] [CrossRef]
- Sadeghi, M.H.; Mortaheb, H.R.; Heidar, K.T.; Gallucci, F. Dehydration of Isopropanol by Poly(Vinyl Alcohol) Hybrid Membrane Containing Oxygen-Plasma Treated Graphene Oxide in Pervaporation Process. Chem. Eng. Res. Des. 2022, 183, 318–330. [Google Scholar] [CrossRef]
- Bolto, B.; Hoang, M.; Xie, Z. A Review of Membrane Selection for the Dehydration of Aqueous Ethanol by Pervaporation. Chem. Eng. Process. Process Intensif. 2011, 50, 227–235. [Google Scholar] [CrossRef]
- Galiano, F.; Figoli, A.; Castro-mu, R. Recent Advances in Pervaporation Hollow Fiber Membranes for Dehydration of Organics. Chem. Eng. Res. Des. 2020, 4, 68–85. [Google Scholar] [CrossRef]
- Hashim Abed Almwli, H.; Mousavi, S.M.; Kiani, S. Preparation of Poly(Butylene Succinate)/Polyvinylpyrrolidone Blend Membrane for Pervaporation Dehydration of Acetone. Chem. Eng. Res. Des. 2021, 165, 361–373. [Google Scholar] [CrossRef]
- Halakoo, E.; Feng, X. Self-Assembled Membranes from Polyethylenimine and Graphene Oxide for Pervaporation Dehydration of Ethylene Glycol. J. Membr. Sci. 2020, 616, 118583. [Google Scholar] [CrossRef]
- Dudek, G.; Turczyn, R.; Konieczny, K. Robust Poly(Vinyl Alcohol) Membranes Containing Chitosan/Chitosan Derivatives Microparticles for Pervaporative Dehydration of Ethanol. Sep. Purif. Technol. 2020, 234, 116094. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Membranes–future for sustainable gas and liquid separation? Curr. Res. Green Sustain. Chem. 2022, 5, 100326. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Zhou, S.; Xue, A.; Wu, F.; Zhao, Y. Polyacrylonitrile-Supported Self-Aggregation Crosslinked Poly (Vinyl Alcohol) Pervaporation Membranes for Ethanol Dehydration. Eur. Polym. J. 2020, 122, 109359. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Marquez, J.A.D.; Huang, S.H.; Lee, K.R. A Recent Review of Developmental Trends in Fabricating Pervaporation Membranes through Interfacial Polymerization and Future Prospects. J. Ind. Eng. Chem. 2021, 97, 129–141. [Google Scholar] [CrossRef]
- Kachhadiya, D.D.; Murthy, Z.V.P. Highly Efficient Chitosan-Based Bio-Polymeric Membranes Embedded with Green Solvent Encapsulated MIL-53(Fe) for Methanol/MTBE Separation by Pervaporation. J. Environ. Chem. Eng. 2023, 11, 109307. [Google Scholar] [CrossRef]
- Tseng, C.; Liu, Y.L. Creation of Water-Permeation Pathways with Matrix-Polymer Functionalized Carbon Nanotubes in Polymeric Membranes for Pervaporation Desalination. J. Membr. Sci. Lett. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Mohamad Nor, N.A.; Nakao, H.; Jaafar, J.; Kim, J.D. Crosslinked Carbon Nanodots with Highly Sulfonated Polyphenylsulfone as Proton Exchange Membrane for Fuel Cell Applications. Int. J. Hydrog. Energy 2020, 45, 9979–9988. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Tamura, K.; Jaafar, J.; Kim, J.D.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. A Novel Imogolite-Reinforced Sulfonated Polyphenylsulfone as Proton Exchange Membrane in Fuel Cell Applications. J. Environ. Chem. Eng. 2021, 9, 105641. [Google Scholar] [CrossRef]
- Mohamad Nor, N.A.; Mohamed, M.A.; Jaafar, J. Modified Sulfonated Polyphenylsulfone Proton Exchange Membrane with Enhanced Fuel Cell Performance: A Review. J. Ind. Eng. Chem. 2022, 116, 32–59. [Google Scholar] [CrossRef]
- Alhoshan, M.; Alam, J.; Shukla, A.K.; Hamid, A.A. Polyphenylsulfone Membrane Blended with Polyaniline for Nanofiltration Promising for Removing Heavy Metals (Cd2+/Pb2+) from Wastewater. J. Mater. Res. Technol. 2023, 24, 6034–6047. [Google Scholar] [CrossRef]
- Kumar, M.; Isloor, A.M.; Nayak, M.C.S.; Todeti, S.R.; Padaki, M.; Ismail, A.F. Hydrophilic Polydopamine/Polyvinylpyrrolidone Blended Polyphenylsulfone Hollow Fiber Membranes for the Removal of Arsenic-V from Water. J. Environ. Chem. Eng. 2023, 11, 110358. [Google Scholar] [CrossRef]
- Yang, F.; Dai, Y.; Zhang, Y.; Wei, W.; Xu, S.; He, R. Imidazole and Imidazolium Functionalized Poly(Vinyl Chloride) Blended Polymer Membranes Reinforced by PTFE for Vanadium Redox Flow Batteries. J. Electroanal. Chem. 2023, 944, 117643. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Ahmad, M.Z.; Cassano, A. Pervaporation-Aided Processes for the Selective Separation of Aromas, Fragrances and Essential (AFE) Solutes from Agro-Food Products and Wastes. Food Rev. Int. 2021, 39, 1499–1525. [Google Scholar] [CrossRef]
- Feng, X.; Huang, R.Y.M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Kuzminova, A.I.; Zolotarev, A.A.; Korniak, A.S.; Ermakov, S.S.; Su, R.; Penkova, A.V. Novel Mixed Matrix Membranes Based on Polyelectrolyte Complex Modified with Fullerene Derivatives for Enhanced Pervaporation and Nanofiltration. Sep. Purif. Technol. 2022, 298, 121649. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, Z.; Zhu, H.; Zhao, X.; Du, J.; Zhang, B. Polyamide Composite Membranes Sandwiched with Modified Carbon Nanotubes for High Throughput Pervaporation Desalination of Hypersaline Solutions. J. Membr. Sci. 2022, 641, 119889. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y. Novel Thermally Cross-Linked Polyimide Membranes for Ethanol Dehydration via Pervaporation. J. Membr. Sci. 2015, 496, 142–155. [Google Scholar] [CrossRef]
- Lee, J.Y.; Zhan, J.Y.; Ang, M.B.M.Y.; Yeh, S.C.; Tsai, H.A.; Jeng, R.J. Improved Performance of Nanocomposite Polyimide Membranes for Pervaporation Fabricated by Embedding Spirobisindane Structure-Functionalized Graphene Oxide. Sep. Purif. Technol. 2021, 265, 118470. [Google Scholar] [CrossRef]
- Yeo, S.J.; Chaudhari, S.; Kim, U.S.; Shin, H.T.; Cho, K.Y.; Kwon, H.T.; Shon, M.Y.; Nam, S.E.; Park, Y.I. Robust and Water-Selective Natural-Cellulose-Nanofiber-Reinforced Polyvinyl Alcohol Composite Membranes for Pervaporation of Isopropanol/Water Mixtures. Chem. Eng. Process.-Process Intensif. 2022, 179, 109046. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Ho, S.Y.; Yang, H.L.; Tsai, H.A.; Huang, S.H.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Acid-Reinforced Ionic Cross-Linking of Sodium Alginate/Polyamidoamine Dendrimer Blended Composite Membranes for Isopropanol Dehydration through Pervaporation. Sep. Purif. Technol. 2022, 288, 120660. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.X.; Huang, L.L.; Wu, L.G.; Zhu, D.F.; Wang, G.Q.; Jiang, X.J. Fabrication of Polydimethylsiloxane Mixed Matrix Membranes for Recovery of Ethylene Glycol Butyl Ether from Water by Pervaporation. J. Membr. Sci. 2023, 665, 121138. [Google Scholar] [CrossRef]
- Mao, G.; Gao, Y.; Zhou, H.; Jin, W. Tuning of Solvent Evaporation to Prepare PEBA Membrane with High Separation Performance for the Pervaporation of Phenol Aqueous Solution. J. Membr. Sci. 2022, 656, 120638. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Le Blanc, L.; Neel, J. Preparation of Membranes from Polyacrylonitrile—Polyvinylpyrrolidone Blends and the Study of Their Behaviour in the Pervaporation of Water—Organic Liquid Mixtures. J. Membr. Sci. 1985, 22, 245–255. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yukoshi, T.; Sanui, K.; Ogata, N. Separation of Water and Ethanol by Pervaporation through Poly(Acrylic Acid-Co-Acrylonitrile) Membrane. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 473–475. [Google Scholar] [CrossRef]
- Uragami, T.; Morikawa, T.; Okuno, H. Characteristics of Permeation and Separation of Aqueous Alcohol Solutions through Hydrophobic Polymer Membranes. Polymer 1989, 30, 1117–1122. [Google Scholar] [CrossRef]
- Uragami, T.; Okazaki, K.; Matsugi, H.; Miyata, T. Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic–Inorganic Hybrid Membranes Composed of Poly(Vinyl Alcohol) and Tetraethoxysilane. Macromolecules 2002, 35, 9156–9163. [Google Scholar] [CrossRef]
- Uragami, T.; Matsugi, H.; Miyata, T. Pervaporation Characteristics of Organic–Inorganic Hybrid Membranes Composed of Poly(Vinyl Alcohol-Co-Acrylic Acid) and Tetraethoxysilane for Water/Ethanol Separation. Macromolecules 2005, 38, 8440–8446. [Google Scholar] [CrossRef]
- Fu, H.; Luo, R.; Liu, P.; Yu, S.; Xing, Q.; Bai, P.; Guo, X.; Lyu, J. Mixed Matrix Membrane for Enhanced Ethanol/Water Pervaporation Separation by Incorporation of Hydrophilic Zr-MOF NU-906 in Chitosan. Sep. Purif. Technol. 2023, 318, 123985. [Google Scholar] [CrossRef]
- Ahmed Janjhi, F.; Chandio, I.; Ali Memon, A.; Ahmed, Z.; Hussain Thebo, K.; Ali Ayaz Pirzado, A.; Ali Hakro, A.; Iqbal, M. Functionalized Graphene Oxide Based Membranes for Ultrafast Molecular Separation. Sep. Purif. Technol. 2021, 274, 117969. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zhou, S.; Xue, A.; Zhang, Y.; Zhao, Y.; Zhong, J.; Zhang, Q. Graphitic Carbon Nitride Nanosheets Embedded in Poly(Vinyl Alcohol) Nanocomposite Membranes for Ethanol Dehydration via Pervaporation. Sep. Purif. Technol. 2017, 188, 24–37. [Google Scholar] [CrossRef]
- Castro-Munõz, R. MXene: A Two-Dimensional Material in Selective Water Separation via Pervaporation. Arab. J. Chem. 2022, 15, 103524. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Buera-González, J.; de la Iglesia, Ó.; Galiano, F.; Fíla, V.; Malankowska, M.; Rubio, C.; Figoli, A.; Téllez, C.; Coronas, J. Towards the Dehydration of Ethanol Using Pervaporation Cross-Linked Poly(Vinyl Alcohol)/Graphene Oxide Membranes. J. Membr. Sci. 2019, 582, 423–434. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zhou, S.; Xue, A.; Zhang, Y.; Zhao, Y.; Zhong, J. Controllable Construction of Polymer/Inorganic Interface for Poly(Vinyl Alcohol)/Graphitic Carbon Nitride Hybrid Pervaporation Membranes. Chem. Eng. Sci. 2018, 181, 237–250. [Google Scholar] [CrossRef]
- Xia, L.L.; Li, C.L.; Wang, Y. In-Situ Crosslinked PVA/Organosilica Hybrid Membranes for Pervaporation Separations. J. Membr. Sci. 2016, 498, 263–275. [Google Scholar] [CrossRef]
- Selim, A.; Toth, A.J.; Fozer, D.; Haaz, E.; Valentínyi, N.; Nagy, T.; Keri, O.; Bakos, L.P.; Szilágyi, I.M.; Mizsey, P. Effect of Silver-Nanoparticles Generated in Poly (Vinyl Alcohol) Membranes on Ethanol Dehydration via Pervaporation. Chin. J. Chem. Eng. 2019, 27, 1595–1607. [Google Scholar] [CrossRef]
- Miranda, T.M.R.; Gonçalves, A.R.; Amorim, M.T.P. Ultraviolet-Induced Crosslinking of Poly(Vinyl Alcohol) Evaluated by Principal Component Analysis of FTIR Spectra. Polym. Int. 2001, 50, 1068–1072. [Google Scholar] [CrossRef]
- Bezuidenhout, D.; Hurndall, M.J.; Sanderson, R.D.; Van Reenen, A.J. Reverse Osmosis Membranes Prepared from Potassium Peroxydisulphate-Modified Poly(Vinyl Alcohol). Desalination 1998, 116, 35–43. [Google Scholar] [CrossRef]
- Preparation and Pervaporation Characteristics of Poly(Vinyl Alcohol) Membrane Modified by Ammonium Persulfate. Available online: https://www.researchgate.net/publication/286068722_Preparation_and_pervaporation_characteristics_of_polyvinyl_alcohol_membrane_modified_by_ammonium_persulfate (accessed on 12 July 2023).
- Zhu, H.; Pan, Y.; Sun, X.; Liu, G.; Qiu, M.; Ding, X.; Fan, Y.; Jin, W. Recycle of Ceramic Substrate of PDMS/Ceramic Composite Membranes towards Alcohol-Permselective Pervaporation. J. Membr. Sci. 2021, 640, 119835. [Google Scholar] [CrossRef]
- Mao, H.; Zhen, H.G.; Ahmad, A.; Li, S.H.; Liang, Y.; Ding, J.F.; Wu, Y.; Li, L.Z.; Zhao, Z.P. Highly Selective and Robust PDMS Mixed Matrix Membranes by Embedding Two-Dimensional ZIF-L for Alcohol Permselective Pervaporation. J. Membr. Sci. 2019, 582, 307–321. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, Q.; Xie, Z.; Hill, M.R.; Zhang, K. Two Dimensional Laminar MoS2 Modified PTMSP Membranes with Improved Organic Solvent Nanofiltration Performance. J. Membr. Sci. 2023, 666, 121139. [Google Scholar] [CrossRef]
- Choi, W.; Park, J.H.; Choi, E.; Kim, M.; Ji, H.; Kwon, O.; Kim, D.; Kim, D.W. Hybridizing Zeolite MFI Nanosheets with PTMSP Membranes for Enhanced Butane Isomer Separations. J. Membr. Sci. 2023, 677, 121659. [Google Scholar] [CrossRef]
- Rom, A.; Friedl, A. Investigation of Pervaporation Performance of POMS Membrane during Separation of Butanol from Water and the Effect of Added Acetone and Ethanol. Sep. Purif. Technol. 2016, 170, 40–48. [Google Scholar] [CrossRef]
- Pei, C.; Mao, H.; Wang, Y.J.; Liu, W.M.; Li, Z.Z.; Xie, W.W.; Li, Y.; Zhao, Z.P. Boosting Pervaporation Performance of ZIF-L/PDMS Mixed Matrix Membranes by Surface Plasma Etching for Ethanol/Water Separation. Sep. Purif. Technol. 2023, 318, 124025. [Google Scholar] [CrossRef]
- Serna-Vázquez, J.; Zamidi Ahmad, M.; Castro-Muñoz, R. Simultaneous Production and Extraction of Bio-Chemicals Produced from Fermentations via Pervaporation. Sep. Purif. Technol. 2021, 279, 119653. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Li, M.S.; Li, N.; Wang, M.X.; Zhang, Y. Controllable Modification of Polymer Membranes by Long-Distance and Dynamic Low-Temperature Plasma Flow: AA Grafting Penetrated through Electrospun PP Fibrous Membranes. J. Membr. Sci. 2013, 440, 9–19. [Google Scholar] [CrossRef]
- Li, M.S.; Zhao, Z.P.; Wang, M.X. Controllable Modification of Polymer Membranes by LDDLT Plasma Flow: Membrane Module Scale-up and Hydrophilic Stability. Chem. Eng. Sci. 2015, 122, 53–63. [Google Scholar] [CrossRef]
- Bowen, T.C.; Meier, R.G.; Vane, L.M. Stability of MFI Zeolite-Filled PDMS Membranes during Pervaporative Ethanol Recovery from Aqueous Mixtures Containing Acetic Acid. J. Membr. Sci. 2007, 298, 117–125. [Google Scholar] [CrossRef]
- Sommer, S.; Melin, T. Performance Evaluation of Microporous Inorganic Membranes in the Dehydration of Industrial Solvents. Chem. Eng. Process. Process Intensif. 2005, 44, 1138–1156. [Google Scholar] [CrossRef]
- Wang, J.; Tsuru, T. Cobalt-Doped Silica Membranes for Pervaporation Dehydration of Ethanol/Water Solutions. J. Membr. Sci. 2011, 369, 13–19. [Google Scholar] [CrossRef]
- Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and Applications of Pervaporation through Zeolite Membranes. J. Membr. Sci. 2004, 245, 1–33. [Google Scholar] [CrossRef]
- Wenten, I.G.; Dharmawijaya, P.T.; Aryanti, P.T.P.; Mukti, R.R. LTA Zeolite Membranes: Current Progress and Challenges in Pervaporation. RSC Adv. 2017, 7, 29520–29539. [Google Scholar] [CrossRef]
- Zeng, H.; He, S.; Hosseini, S.S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes 2022, 2, 100015. [Google Scholar] [CrossRef]
- Tao, T.L.; Chang, C.K.; Kang, Y.H.; Chen, J.J.; Kang, D.Y. Enhanced Pervaporation Performance of Zeolite Membranes Treated by Atmospheric-Pressure Plasma. J. Taiwan. Inst. Chem. Eng. 2020, 116, 112–120. [Google Scholar] [CrossRef]
- Charik, F.Z.; Achiou, B.; Belgada, A.; Elidrissi, Z.C.; Ouammou, M.; Rabiller-Baudry, M.; Younssi, S.A. Optimal Preparation of Low-Cost and High-Permeation NaA Zeolite Membrane for Effective Ethanol Dehydration. Microporous Mesoporous Mater. 2022, 344, 112229. [Google Scholar] [CrossRef]
- Lin, Y.F.; Fang, Y.X.; Xu, Z.L.; Taymazov, D. SUZ-4 Zeolite Interlayer Enhanced Thin-Film Composite Pervaporation Membrane for Ethanol Dehydration. Sep. Purif. Technol. 2023, 314, 123587. [Google Scholar] [CrossRef]
- Zhou, H.; Korelskiy, D.; Leppäjärvi, T.; Grahn, M.; Tanskanen, J.; Hedlund, J. Ultrathin Zeolite X Membranes for Pervaporation Dehydration of Ethanol. J. Membr. Sci. 2012, 399, 106–111. [Google Scholar] [CrossRef]
- Guo, J.C.; Zou, C.; Chiang, C.Y.; Chang, T.A.; Chen, J.J.; Lin, L.C.; Kang, D.Y. NaP1 Zeolite Membranes with High Selectivity for Water-Alcohol Pervaporation. J. Membr. Sci. 2021, 639, 119762. [Google Scholar] [CrossRef]
- Teplyakov, V.V.; Shalygin, M.G.; Syrtsova, D.A.; Netrusov, A.I. Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Membrane Gas Separation Combined with Renewable Energy Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–354. [Google Scholar] [CrossRef]
- Boutikos, P.; Pereira, C.S.M.; Silva, V.M.T.M.; Rodrigues, A.E. Performance Evaluation of Silica Membrane for Water–n-Butanol Binary Mixture. Sep. Purif. Technol. 2014, 127, 18–28. [Google Scholar] [CrossRef]
- Van Veen, H.M.; Van Delft, Y.C.; Engelen, C.W.R.; Pex, P.P.A.C. Dewatering of Organics by Pervaporation with Silica Membranes. Sep. Purif. Technol. 2001, 22, 361–366. [Google Scholar] [CrossRef]
- van Veen, H.M.; Rietkerk, M.D.A.; Shanahan, D.P.; van Tuel, M.M.A.; Kreiter, R.; Castricum, H.L.; ten Elshof, J.E.; Vente, J.F. Pushing Membrane Stability Boundaries with HybSi® Pervaporation Membranes. J. Membr. Sci. 2011, 380, 124–131. [Google Scholar] [CrossRef]
- Kujawska, A.; Knozowska, K.; Kujawa, J.; Kujawski, W. Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes. Sep. Purif. Technol. 2016, 126, 68–80. [Google Scholar] [CrossRef]
- Casado, C.; Urtiaga, A.; Gorri, D.; Ortiz, I. Pervaporative Dehydration of Organic Mixtures Using a Commercial Silica Membrane: Determination of Kinetic Parameters. Sep. Purif. Technol. 2005, 42, 39–45. [Google Scholar] [CrossRef]
- Nagasawa, H.; Tsuru, T. Silica Membrane Application for Pervaporation Process. In Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 217–241. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Tsuru, T. Pervaporation of Water/Ethanol Mixtures through Microporous Silica Membranes. Sep. Purif. Technol. 2009, 66, 479–485. [Google Scholar] [CrossRef]
- Asaeda, M.; Sakou, Y.; Yang, J.; Shimasaki, K. Stability and Performance of Porous Silica–Zirconia Composite Membranes for Pervaporation of Aqueous Organic Solutions. J. Membr. Sci. 2002, 209, 163–175. [Google Scholar] [CrossRef]
- Pandey, R.P.; Shahi, V.K. Functionalized Silica–Chitosan Hybrid Membrane for Dehydration of Ethanol/Water Azeotrope: Effect of Cross-Linking on Structure and Performance. J. Membr. Sci. 2013, 444, 116–126. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Ebadi Amooghin, A.; Shirazi, M.M.A.; Pishnamazi, M.; Shirazian, S. Water Desalination and Ion Removal Using Mixed Matrix Electrospun Nanofibrous Membranes: A Critical Review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Qin, Z.; Ma, Y.; Wei, J.; Guo, H.; Wang, B.; Deng, J.; Yi, C.; Li, N.; Yi, S.; Deng, Y.; et al. Recent Progress in Ternary Mixed Matrix Membranes for CO2 Separation. Green. Energy Environ. 2023, in press. [Google Scholar] [CrossRef]
- Xu, X.; Nikolaeva, D.; Hartanto, Y.; Luis, P. MOF-based membranes for pervaporation. Sep. Purif. Technol.. 2021, 278, 119233. [Google Scholar] [CrossRef]
- Foller, T.; Wang, H.; Joshi, R. Rise of 2D Materials-Based Membranes for Desalination. Desalination 2022, 536, 115851. [Google Scholar] [CrossRef]
- Subaer; Haris, A.; Irhamsyah, A.; Permatasari, A.D.; Desa, S.S.; Irfanita, R.; Wahyuni, S. Pervaporation Membrane Based on Laterite Zeolite-Geopolymer for Ethanol-Water Separation. J. Clean. Prod. 2020, 249, 119413. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Wan, Y.; Jin, W. Fabrication of High Silicalite-1 Content Filled PDMS Thin Composite Pervaporation Membrane for the Separation of Ethanol from Aqueous Solutions. J. Membr. Sci. 2017, 524, 1–11. [Google Scholar] [CrossRef]
- Tanaka, R.; Ito, Y.; Hasegawa, Y.; Higuchi, T. Synthesis of LTA Zeolite Membranes from Metal Alkoxides and Examination of the Pervaporation Performance. Microporous Mesoporous Mater. 2021, 326, 111346. [Google Scholar] [CrossRef]
- Qiao, X.; Chung, T.S.; Rajagopalan, R. Zeolite Filled P84 Co-Polyimide Membranes for Dehydration of Isopropanol through Pervaporation Process. Chem. Eng. Sci. 2006, 61, 6816–6825. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, Z.; Ding, H.; Pan, F.; Wang, B.; Yang, J.; Cao, X. Elevated Pervaporation Performance of Polysiloxane Membrane Using Channels and Active Sites of Metal Organic Framework CuBTC. J. Membr. Sci. 2015, 481, 73–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Ji, S.; Zhang, R.; Zhao, C.; Li, J.R. Metal–Organic Framework/Poly(Vinyl Alcohol) Nanohybrid Membrane for the Pervaporation of Toluene/n-Heptane Mixtures. J. Membr. Sci. 2015, 489, 144–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Zhao, C.; Wang, L.; Ji, S.; Li, J.R. Co(HCOO)2-Based Hybrid Membranes for the Pervaporation Separation of Aromatic/Aliphatic Hydrocarbon Mixtures. J. Membr. Sci. 2016, 520, 646–656. [Google Scholar] [CrossRef]
- Miyamoto, M.; Hori, K.; Goshima, T.; Takaya, N.; Oumi, Y.; Uemiya, S. An Organoselective Zirconium-Based Metal–Organic-Framework UiO-66 Membrane for Pervaporation. Eur. J. Inorg. Chem. 2017, 2017, 2094–2099. [Google Scholar] [CrossRef]
- Hu, F.-H.; Chi, L.-T.; Syu, G.-B.; Yu, T.-Y.; Lin, M.-P.; Chen, J.-J.; Yu, W.-Y.; Kang, D.-Y. Mixed-Linker MOF-303 Membranes for Pervaporation. J. Membr. Sci. Lett. 2023, 3, 100053. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, T.; Xia, Q.; Yu, X.; Wang, Y. Constructing Superhydrophobic ZIF-8 Layer with Bud-like Surface Morphology on PDMS Composite Membrane for Highly Efficient Ethanol/Water Separation. J. Environ. Chem. Eng. 2021, 9, 104977. [Google Scholar] [CrossRef]
- Zhu, T.; Xu, S.; Yu, F.; Yu, X.; Wang, Y. ZIF-8@GO Composites Incorporated Polydimethylsiloxane Membrane with Prominent Separation Performance for Ethanol Recovery. J. Membr. Sci. 2020, 598, 117681. [Google Scholar] [CrossRef]
- Wang, H.; Tang, S.; Ni, Y.; Zhang, C.; Zhu, X.; Zhao, Q. Covalent Cross-Linking for Interface Engineering of High Flux UiO-66-TMS/PDMS Pervaporation Membranes. J. Membr. Sci. 2020, 598, 117791. [Google Scholar] [CrossRef]
- Lai, J.Y.; Wang, T.Y.; Zou, C.; Chen, J.J.; Lin, L.C.; Kang, D.Y. Highly-selective MOF-303 membrane for alcohol dehydration. J. Membr. Sci. 2022, 661, 120879. [Google Scholar] [CrossRef]
- Kang, C.H.; Lin, Y.F.; Huang, Y.S.; Tung, K.L.; Chang, K.S.; Chen, J.T.; Hung, W.S.; Lee, K.R.; Lai, J.Y. Synthesis of ZIF-7/Chitosan Mixed-Matrix Membranes with Improved Separation Performance of Water/Ethanol Mixtures. J. Membr. Sci. 2013, 438, 105–111. [Google Scholar] [CrossRef]
- Sorribas, S.; Kudasheva, A.; Almendro, E.; Zornoza, B.; de la Iglesia, Ó.; Téllez, C.; Coronas, J. Pervaporation and Membrane Reactor Performance of Polyimide Based Mixed Matrix Membranes Containing MOF HKUST-1. Chem. Eng. Sci. 2015, 124, 37–44. [Google Scholar] [CrossRef]
- Vinu, M.; Senthil Raja, D.; Jiang, Y.C.; Liu, T.Y.; Xie, Y.Y.; Lin, Y.F.; Yang, C.C.; Lin, C.H.; Alshehri, S.M.; Ahamad, T.; et al. Effects of Structural Crystallinity and Defects in Microporous Al-MOF Filled Chitosan Mixed Matrix Membranes for Pervaporation of Water/Ethanol Mixtures. J. Taiwan. Inst. Chem. Eng. 2018, 83, 143–151. [Google Scholar] [CrossRef]
- Vinu, M.; Pal, S.; Chen, J.D.; Lin, Y.F.; Lai, Y.L.; Lee, C.S.; Lin, C.H. Microporous 3D Aluminum MOF Doped into Chitosan-Based Mixed Matrix Membranes for Ethanol/Water Separation. J. Chin. Chem. Soc. 2019, 66, 1165–1171. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Q.; Zhao, J.; Hua, Y.; Sun, J.; Duan, J.; Jin, W. High Efficient Water/Ethanol Separation by a Mixed Matrix Membrane Incorporating MOF Filler with High Water Adsorption Capacity. J. Membr. Sci. 2017, 544, 68–78. [Google Scholar] [CrossRef]
- Deng, Y.H.; Chen, J.T.; Chang, C.H.; Liao, K.S.; Tung, K.L.; Price, W.E.; Yamauchi, Y.; Wu, K.C.W. A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance. Angew. Chem. Int. Ed. 2016, 55, 12793–12796. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, Y.; Geng, Y.; Lu, X.; Jia, Z. Adjustable Pervaporation Performance of Zr-MOF/Poly(Vinyl Alcohol) Mixed Matrix Membranes. J. Chem. Technol. Biotechnol. 2019, 94, 973–981. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Z.; Cao, K.; Nair, S.; Cheng, X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. Pervaporation Performance Comparison of Hybrid Membranes Filled with Two-Dimensional ZIF-L Nanosheets and Zero-Dimensional ZIF-8 Nanoparticles. J. Membr. Sci. 2017, 523, 185–196. [Google Scholar] [CrossRef]
- Gao, B.; Jiang, Z.; Zhao, M.; Wu, H.; Pan, F.; Mayta, J.Q.; Chang, Z.; Bu, X. Enhanced Dehydration Performance of Hybrid Membranes by Incorporating Lanthanide-Based MOFs. J. Membr. Sci. 2018, 546, 31–40. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Pan, F.; Li, Z.; Ding, H.; Liu, G.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Highly Water-Permeable and Stable Hybrid Membrane with Asymmetric Covalent Organic Framework Distribution. J. Membr. Sci. 2016, 520, 583–595. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van Der Bruggen, B. Covalent Organic Frameworks for Membrane Separation. Chem. Soc. Rev. 2019, 48, 2665–2681. [Google Scholar] [CrossRef]
- Luo, R.; Bai, P.; Lyu, J.; Guo, X. Fabrication of Melamine-Based Hybrid Organic Membrane for Ethanol/Water Pervaporation. Microporous Mesoporous Mater. 2022, 335, 111810. [Google Scholar] [CrossRef]
- Zhao, D.; Li, M.; Jia, M.; Zhou, S.; Zhao, Y.; Peng, W.; Xing, W. Asymmetric Poly (Vinyl Alcohol)/Schiff Base Network Framework Hybrid Pervaporation Membranes for Ethanol Dehydration. Eur. Polym. J. 2022, 162, 110924. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Agrawal, K.V.; Lai, Z.; Coronas, J. Towards Large-Scale Application of Nanoporous Materials in Membranes for Separation of Energy-Relevant Gas Mixtures. Sep. Purif. Technol. 2023, 308, 122919. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Zamidi Ahmad, M.; Malankowska, M.; Coronas, J. A New Relevant Membrane Application: CO2 Direct Air Capture (DAC). Chem. Eng. J. 2022, 446, 137047. [Google Scholar] [CrossRef]
- Russo, F.; Castro-Munoz, R.; Santoro, S.; Galiano, F.; Figoli, A. A Review on Electrospun Membranes for Potential Air Filtration Application. J. Environ. Chem. Eng. 2022, 10, 108452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imad, M.; Castro-Muñoz, R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. Membranes 2023, 13, 848. https://doi.org/10.3390/membranes13100848
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. Membranes. 2023; 13(10):848. https://doi.org/10.3390/membranes13100848
Chicago/Turabian StyleImad, Muhammad, and Roberto Castro-Muñoz. 2023. "Ongoing Progress on Pervaporation Membranes for Ethanol Separation" Membranes 13, no. 10: 848. https://doi.org/10.3390/membranes13100848
APA StyleImad, M., & Castro-Muñoz, R. (2023). Ongoing Progress on Pervaporation Membranes for Ethanol Separation. Membranes, 13(10), 848. https://doi.org/10.3390/membranes13100848