Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters
Abstract
:1. Introduction
2. Experimental Setup
3. Mathematical Treatments
3.1. Concentration Polarization
3.2. Concentration Distributions
3.3. Mass-Transfer Rate Enhancement
4. Results and Discussions
4.1. Flux Improvement by Inserting Min-Channel Turbulence Promoters in Membrane Modules
4.2. Absorption Flux Improvement and Further Absorption Flux Enhancement
4.3. Power Consumption Increment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Wetted area (m2) | |
Concentration (mol m−3) | |
Mean value of (mol m−3) | |
Membrane coefficient based on the Knudsen diffusion model () | |
Membrane coefficient based on the molecular diffusion model () | |
Membrane permeation coefficient () | |
Equivalent hydraulic diameter of channel (m), | |
Further absorption flux enhancement | |
Accuracy deviation of experimental results from the theoretical predictions | |
Fanning friction factor | |
Dimensionless Henry’s constant | |
Channel height (m) | |
Hydraulic dissipate energy (J kg−1), | |
Absorption flux enhancement | |
Power consumption relative index | |
Absorption flux (mol m−2 s−1) | |
Mass transfer coefficient in the CO2/N2 stream (m s−1) | |
Mass transfer coefficient in the MEA absorbent stream (m s−1) | |
Equilibrium constant | |
Reduced equilibrium constant | |
Overall mass transfer coefficient of membrane (m s−1) | |
Friction loss (J kg−1), | |
Channel length (m) | |
Molecular weight of water (kg mol−1) | |
Nexp | Number of experimental measurements |
Wetted perimeter (m) | |
Saturation vapor pressure in the CO2/N2 stream (Pa) | |
Saturation vapor pressure in the MEA absorbent stream (Pa) | |
Volumetric flow rate of the gas feed stream (m3 s−1) | |
Volumetric flow rate of the MEA absorbent side (m3 s−1) | |
Gas constant (8.314 J mol−1 K−1) | |
Re | Reynolds number |
Enhanced dimensionless Sherwood number | |
Sherwood number for laminar flow | |
Average width of the promoter (m) | |
The punched hole diameter (m) | |
The average width of the punched hole inside the promoter (m) | |
Natural log mean CO2 mole fraction in the membrane | |
Axial coordinate along the flow direction (m) | |
Greek letters | |
Enhancement factor | |
Thickness of membrane (µm) | |
Membrane porosity | |
Average velocity (m3 s−1) | |
Density (Kg m−3), | |
Concentration polarization coefficients | |
Subscripts | |
1 | Membrane surface on gas feed side |
Membrane surface on MEA side | |
Membrane surface on CO2/N2 side | |
a | CO2/N2 feed flow channel |
b | MEA absorbent flow channel |
cal | Calculated results |
empty | Channel without embedding turbulence promoters |
exp | Experimental results |
g | CO2/N2 feed side |
in | At the inlet |
MEA feed side | |
out | At the outlet |
promoter | Channel embedding 3D mini-channel turbulence promoters |
theo | Theoretical predictions |
References
- Rangwala, H.A. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 1996, 112, 229–240. [Google Scholar] [CrossRef]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Patel, R.; Mujtaba, I.M. Scope and limitations of modelling, simulation, and optimisation of a spiral wound reverse osmosis process-based water desalination. Processes 2020, 8, 573–603. [Google Scholar] [CrossRef]
- Overmans, S.; Ignacz, G.; Beke, A.K.; Xu, J.J.; Saikaly, P.E.; Szekely, G.; Lauersen, K.J. Continuous extraction and concentration of secreted metabolites from engineered microbes using membrane technology. Green Chem. 2022, 24, 5479–5489. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.L.; Yu, H.; Liu, Y.X.; Hussain, A. Carbon dioxide capture using liquid absorption methods: A review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Epsztein, R.; Shaulsky, E.; Qin, M.H.; Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. J. Membr. Sci. 2019, 580, 316–326. [Google Scholar] [CrossRef]
- Thomas, N.; Mavukkandy, M.O.; Loutatidou, S.; Arafat, H.A. Membrane distillation research & implementation: Lessons from the past five decades. Sep. Purif. Technol. 2017, 189, 108–127. [Google Scholar]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Brettschneider, O.; Thiele, R.; Faber, R.; Thielert, H.; Wozny, G. Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3–CO2–H2S–NaOH–H2O. Sep. Purif. Technol. 2004, 39, 139–159. [Google Scholar] [CrossRef]
- Mangalapally, H.P.; Notz, R.; Hoch, S.; Asprion, N.; Sieder, G.; Garcia, H.; Hasse, H. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia 2009, 1, 963–970. [Google Scholar] [CrossRef]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, B.H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 41, 109–122. [Google Scholar] [CrossRef]
- Gabelman, A.; Hwang, S.T. Hollow fiber membrane contactors. J. Membr. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Faiz, R.; Al-Marzouqi, M. CO2 removal from natural gas at high pressure using membrane contactors: Model validation and membrane parametric studies. J. Membr. Sci. 2010, 365, 232–241. [Google Scholar] [CrossRef]
- Harbou, I.V.; Imle, M.; Hasse, H. Modeling and simulation of reactive absorption of CO2 with MEA: Results for four different packing on two different scales. Chem. Eng. Sci. 2014, 105, 179–190. [Google Scholar] [CrossRef]
- Zhang, Z.E.; Yan, Y.F.; Zhang, L.; Ju, S.X. Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor. Int. J. Chem. Eng. 2014, 2014, 56–62. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Zhang, Z.E.; Yan, Y.F.; Zhang, L.; Ju, S.X.; Chen, Y.X.; Ran, J.Y.; Pu, G.; Qin, C.L. Theoretical study on CO2 absorption from biogas by membrane contactors. Ind. Eng. Chem. Res. 2014, 53, 14075–14083. [Google Scholar] [CrossRef]
- Sea, B.; Park, Y.I. Comparison of porous hollow fibers as a membrane contactor for carbon dioxide absorption. J. Ind. Eng. Chem. 2002, 8, 290–296. [Google Scholar]
- Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 2018, 66, 1–41. [Google Scholar] [CrossRef]
- Lin, Y.F.; Ko, C.C.; Chen, C.H.; Tung, K.L.; Chang, K.S.; Chung, T.W. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Appl. Energy 2014, 129, 25–31. [Google Scholar] [CrossRef]
- Lin, Y.F.; Kuo, J.W. Mesoporous bis(trimethoxysilyl)hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chem. Eng. J. 2016, 300, 29–35. [Google Scholar] [CrossRef]
- Belaissaoui, B.; Favre, E. Evaluation of a dense skin hollow fiber gas-liquid membrane contactor for high pressure removal of CO2 from syngas using Selexol as the absorbent. Chem. Eng. Sci. 2018, 184, 186–199. [Google Scholar] [CrossRef]
- Rongwong, W.; Boributh, S.; Assabumrungrat, S.; Laosiripojana, N.; Jiraratananon, R. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. J. Membr. Sci. 2012, 392–393, 38–47. [Google Scholar] [CrossRef]
- Bandini, S.; Gostoli, C.; Sarti, G.C. Role of heat and mass transfer in membrane distillation process. Desalination 1991, 81, 91–106. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation II: Direct contact membrane distillation. J. Membr. Sci. 1996, 120, 123–133. [Google Scholar] [CrossRef]
- Schofield, R.W.; Fane, A.G.; Fell, C.J.D. Heat and mass transfer in membrane distillation. J. Membr. Sci. 1987, 33, 299–313. [Google Scholar] [CrossRef]
- Bian, R.; Yamamoto, K.; Watanabe, Y. The effect of shear rate on controlling the concentration polarization and membrane fouling. Desalination 2000, 131, 225–236. [Google Scholar] [CrossRef]
- Santos, J.L.C.; Geralds, V.; Velizarov, S.; Crespo, J.G. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J. Membr. Sci. 2007, 305, 103–117. [Google Scholar] [CrossRef]
- Nasim Afza, K.; Hashemifard, S.A.; Abbasi, M. Modelling of CO2 absorption via hollow fiber membrane contactors: Comparison of pore gas diffusivity models. Chem. Eng. Sci. 2018, 190, 110–121. [Google Scholar] [CrossRef]
- Ho, C.D.; Chen, L.; Chen, L.; Huang, M.C.; Lai, J.Y.; Chen, Y.A. Distillate flux enhancement in the air gap membrane distillation with inserting carbon-fiber spacers. Sep. Sci. Technol. 2017, 52, 2815–2826. [Google Scholar] [CrossRef]
- Shakaib, M.; Hasani, S.M.F.; Mahmood, M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels. J. Membr. Sci. 2009, 326, 270–284. [Google Scholar] [CrossRef]
- Bakhshali, N.; Tahery, R.; Banazadeh, H. Modelling and simulation of mass transfer in tubular gas-liquid membrane contactors for turbulent flow conditions and comparison of results with laminar flow conditions. Middle-East J. Sci. Res. 2013, 10, 1419–1430. [Google Scholar]
- Hosseinzadeh, A.; Hosseinzadeh, M.; Vatania, A.; Mohammadi, T. Mathematical modeling for the simultaneous absorption of CO2 and SO2 using MEA in hollow fiber membrane contactors. Chem. Eng. Process. 2017, 111, 35–45. [Google Scholar] [CrossRef]
- Ho, C.D.; Chen, L.; Chen, L.; Liou, J.W.; Jen, L.Y. Theoretical and experimental studies of CO2 absorption by the amine solvent system in parallel-plate membrane contactors. Sep. Purif. Technol. 2018, 198, 128–136. [Google Scholar] [CrossRef]
- Tobiesen, F.A.; Svendsen, H.F. Study of a Modified Amine-based Regeneration Unit. Ind. Eng. Chem. Res. 2006, 45, 2489–2496. [Google Scholar] [CrossRef]
- Hamimour, N.; Sandall, O.C. Absorption of carbon dioxide into aqueous methyldiethanolamine. Chem. Eng. Sci. 1984, 39, 1791–1796. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, Y.G.; Kim, M.K.; Lee, S.H.; Park, J.H. Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Sep. Purif. Technol. 2019, 220, 189–196. [Google Scholar] [CrossRef]
- Dimitrov, D.; Schreve, K.; de Beer, N. Advances in three dimensional printing—State of the art and future perspectives. Rapid Prototyp. J. 2006, 12, 136–147. [Google Scholar] [CrossRef]
- Luelf, T.; Rall, D.; Wypysek, D.; Wiese, M.; Femmer, T.; Bremer, C.; Michaelis, J.U.; Wessling, M. 3D-printed rotating spinnerets create membranes with a twist. J. Membr. Sci. 2018, 555, 7–19. [Google Scholar] [CrossRef]
- Ganapathy, H.; Shooshtari, A.; Dessiatoun, S.; Alshehhi, M.; Ohadi, M. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor. Appl. Energy 2014, 119, 43–56. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, Z.; Liu, W. Turbulent heat transfer enhancement in the mini-channel by enhancing the original flow pattern with v-ribs. Int. J. Heat Mass Transfer. 2020, 163, 120378–120390. [Google Scholar] [CrossRef]
- Ho, C.D.; Chang, H.; Tu, J.W.; Lim, J.W.; Chiou, C.P.; Chen, Y.J. Theoretical and Experimental Studies of CO2 Absorption in Double-Unit Flat-Plate Membrane Contactors. Membranes 2022, 12, 370–393. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Hwang, S.T. Concentration polarization, separation factor, and Peclet number in membrane processes. J. Membr. Sci. 1997, 32, 73–90. [Google Scholar] [CrossRef]
- Zheng, Q.; Dong, L.; Chen, J.; Gao, G.; Fei, W. Absorption solubility calculation and process simulation for CO2 capture. J. Chem. Ind. Eng. 2010, 61, 1740–1746. [Google Scholar]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Iversen, S.B.; Bhatia, V.K.; Dam-Jphasen, K.; Jonson, G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci. 1997, 130, 205–217. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Thermal Fluid Sci. 1988, 11, 3–17. [Google Scholar] [CrossRef]
- Welty, J.R.; Wicks, C.E.; Wilson, R.E. Fundamentals of Momentum, Heat, and Mass Transfer, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
Countercurrent-Flow Operations | |||||||
---|---|---|---|---|---|---|---|
Circle (Ref. [45]) | Circle [The present work] | ||||||
Type A | Type B | Type A | Type B | ||||
30 | 5.0 | 21.88 | 23.62 | 44.19 | 18.30 | 61.40 | 30.56 |
6.67 | 20.11 | 23.14 | 43.91 | 19.82 | 38.06 | 12.17 | |
8.33 | 19.68 | 22.59 | 36.47 | 14.03 | 35.46 | 13.19 | |
10.0 | 17.52 | 19.02 | 28.37 | 9.23 | 25.37 | 5.34 | |
35 | 5.0 | 24.58 | 25.42 | 39.85 | 12.26 | 48.73 | 18.59 |
6.67 | 22.92 | 24.09 | 34.47 | 9.40 | 41.79 | 14.26 | |
8.33 | 21.35 | 22.95 | 34.80 | 11.08 | 31.07 | 6.61 | |
10.0 | 21.06 | 22.67 | 24.92 | 3.19 | 23.12 | 3.67 | |
40 | 5.0 | 26.70 | 32.04 | 37.16 | 8.26 | 46.95 | 11.29 |
6.67 | 25.81 | 31.45 | 34.86 | 7.19 | 42.29 | 8.25 | |
8.33 | 22.91 | 29.80 | 30.05 | 5.81 | 32.53 | 2.10 | |
10.0 | 21.94 | 28.86 | 27.86 | 4.86 | 30.60 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-D.; Chen, L.; Tu, J.-W.; Lin, Y.-C.; Lim, J.-W.; Chen, Z.-Z. Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters. Membranes 2023, 13, 899. https://doi.org/10.3390/membranes13120899
Ho C-D, Chen L, Tu J-W, Lin Y-C, Lim J-W, Chen Z-Z. Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters. Membranes. 2023; 13(12):899. https://doi.org/10.3390/membranes13120899
Chicago/Turabian StyleHo, Chii-Dong, Luke Chen, Jr-Wei Tu, Yu-Chen Lin, Jun-Wei Lim, and Zheng-Zhong Chen. 2023. "Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters" Membranes 13, no. 12: 899. https://doi.org/10.3390/membranes13120899
APA StyleHo, C. -D., Chen, L., Tu, J. -W., Lin, Y. -C., Lim, J. -W., & Chen, Z. -Z. (2023). Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters. Membranes, 13(12), 899. https://doi.org/10.3390/membranes13120899