Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction
Abstract
:1. Introduction
2. Numerical Model
2.1. Fluid-Structure Interaction Model Equations
2.1.1. Fluid Domain
2.1.2. Solid Domain
2.1.3. Coupling Boundary Equations of the Air and Membrane Tube
2.2. Geometry and Meshing
2.3. Boundary Conditions
2.4. Fluid-Structure Interaction Solution Process
2.5. Modal Analysis and Solution
3. Model Verification
4. Results and Discussion
4.1. Effect of Length and Air Velocity on the Hollow Fiber Membrane’s Inherent Frequency and Mode Shape
4.2. Effect of Length and Air Velocity on the Hollow Fiber Membrane Vibration
4.3. Flow Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, Y.; Liu, J.; Lia, D.; Zhang, H.; Cao, X.; Wei, S.; Yoshino, H. Large-scale and long-term monitoring of the thermal environments and adaptive behaviors in Chinese urban residential buildings. Build. Sci. 2020, 168, 106524. [Google Scholar] [CrossRef]
- Zhang, L. Heat and mass transfer in a cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions. Int. J. Heat Mass Transf. 2007, 50, 151–162. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, C.; Pei, L. Conjugate heat and mass transfer in membrane-formed channels in all entry regions. Int. J. Heat Mass Transf. 2010, 53, 815–824. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, L. Researches and trends in membrane-based liquid desiccant air dehumidification. Renew. Sustain. Energy Rev. 2013, 28, 425–440. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, N. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation. Energy 2014, 65, 441–451. [Google Scholar] [CrossRef]
- Lin, J.; Huang, S.; Wang, R.; Chua, K.J. On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier. Appl. Energy 2019, 250, 786–800. [Google Scholar] [CrossRef]
- Zhang, W.K.; Yang, M.; Chen, J.C.; Tao, S.; Huang, X.; Hu, B.; Huang, S.M. Quasi-counter flow parallel-plate membrane con-tactors (QCPMC) for liquid desiccant air dehumidification: Conjugate heat and mass transfer. Int. J. Therm. Sci. 2018, 134, 665–672. [Google Scholar] [CrossRef]
- Qi, R.; Dong, C.; Zhang, L.Z. A review of liquid desiccant air dehumidification: From system to material manipulations. Energy 2020, 215, 109897. [Google Scholar] [CrossRef]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Liang, C. Research on a refrigeration dehumidification system with membrane-based total heat recovery. Heat Transf. Eng. 2014, 35, 1043–1049. [Google Scholar] [CrossRef]
- Liu, X.; Qu, M.; Liu, X.; Wang, L. Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances. Renew. Sustain. Energy Rev. 2019, 110, 446–466. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Cui, X.; Su, J.; Yan, W.; Jin, L. Flow behavior and mass transfer of humid air across fiber membrane bundles. Appl. Therm. Eng. 2022, 207, 118200. [Google Scholar] [CrossRef]
- Zhang, L. Heat and mass transfer in a randomly packed hollow fiber membrane module: A fractal model approach. Int. J. Heat Mass Transf. 2011, 54, 2921–2931. [Google Scholar] [CrossRef]
- Nazif, A.; Karkhanechi, H.; Saljoughi, E.; Mousavi, S.M.; Matsuyama, H. Effective Parameters on Fabrication and Modification of Braid Hollow Fiber Membranes: A Review. Membranes 2021, 11, 884. [Google Scholar] [CrossRef]
- Ghidossi, R.; Veyret, D.; Moulin, P. Computational fluid dynamics applied to membranes: State of the art and opportunities. Chem. Eng. Process. 2006, 45, 437–454. [Google Scholar] [CrossRef]
- Zhang, L. An analytical solution to heat and mass transfer in hollow fiber membrane contactors for liquid desiccant air dehumidification. J. Heat Transf. 2011, 133, 092001. [Google Scholar] [CrossRef]
- Huang, S.; Yang, M.; Yang, M.; Yang, X. Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank for air humidification. Int. J. Therm. Sci. 2013, 73, 28–37. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Li, F.; Shen, C.; Huang, M.; Wang, Z.; Cao, C.; Zhou, Q.; Sheng, Y.; Sand, W. CFD simulations of fiber-fiber interaction in a hollow fiber membrane bundle: Fiber distance and position matters. Sep. Purif. Technol. 2020, 209, 707–713. [Google Scholar] [CrossRef]
- Li, T.; Law, A.W.; Jiang, Y.; Harijanto, A.K.; Fane, A.G. Fouling control of submerged hollow fibre membrane bioreactor with transverse vibration. J. Membr. Sci. 2016, 505, 216–224. [Google Scholar] [CrossRef]
- Low, K.S.; Wang, Y.; Ng, D.Y.F.; Goh, K.; Li, Y.; Wang, R. Understanding the effect of transverse vibration on hollow fiber membranes for submerged forward osmosis processes. J. Membr. Sci. 2020, 610, 118211. [Google Scholar] [CrossRef]
- Chai, M.; Ye, Y.; Chen, V. Application of rotational vibration in a submerged hollow fibre membrane system for bioseparation of high concentration yeast suspensions. J. Membr. Sci. 2019, 573, 145–156. [Google Scholar] [CrossRef]
- Izhar, A.; Qureshi, A.H.; Khushnood, S. Simulation of fluid structure interaction of heat exchanger tube using ANSYS CFX. Life Sci. J. 2013, 10, 2317–2328. [Google Scholar]
- Ji, J.; Ge, P.; Bi, W. Numerical analysis on shell-side flow-induced vibration and heat transfer characteristics of elastic tube bundle in heat exchanger. Appl. Therm. Eng. 2016, 107, 544–551. [Google Scholar] [CrossRef]
- Khushnood, S.; Nizam, L.A. Experimental study on cross-flow induced vibrations in heat exchanger tube bundle. China Ocean Eng. 2017, 31, 91–97. [Google Scholar] [CrossRef]
- Zamani, F.; Law, A.W.K.; Fane, A.G. Hydrodynamic analysis of vibrating hollow fibre membranes. J. Membr. Sci. 2013, 429, 304–312. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Waite, T.D.; Leslie, G. Fluid Structure Interaction analysis of lateral fibre movement in submerged membrane reactors. J. Membr. Sci. 2016, 504, 240–250. [Google Scholar] [CrossRef]
- Sangeetha, M.S.; Kandaswamy, A. Certain Investigations on the Performance of Hemodialyser Membrane Based on Morphological Characteristics and Modeling and Simulation Techniques. Ph.D. Thesis, Anna University, Tamil Nadu, India, 2018. [Google Scholar]
- Jeong, E.; Khan, H.A.; Yun, S.; Lee, K. Fluid-Solid Interaction Analysis for Improvement in the Dehumidification Characteristics of a Hollow Fiber Membrane Module for Use in a Pneumatic Power Unit. J. Korean Phys. Soc. 2019, 75, 791–800. [Google Scholar] [CrossRef]
- Li, Z.; Chen, B.; Liang, C.; Li, N.; Zhao, Y.; Dong, C. The Effect of Flow-Induced Vibration on Heat and Mass Transfer Performance of Hollow Fiber Membranes in the Humidification/Dehumidification Process. Membranes 2021, 11, 918. [Google Scholar] [CrossRef]
- Jang, Y.; Ryoo, H.; Shin, Y.; Park, H. Simulation of fluid and shear stress behaviors in reciprocating membrane bioreactors for fouling control using fluid–structure interaction analysis. Sep. Purif. Technol. 2022, 294, 121220. [Google Scholar] [CrossRef]
- Hou, H.P.; Rui, T.T.; Deng, R.; Xu, Z.F.; Liu, S.H. Modal analysis of central impression cylinder based on fluid–solid coupling method. J. Low Freq. Noise. Vib. Act. Control 2021, 40, 772–783. [Google Scholar] [CrossRef] [Green Version]
- Khayyer, A.; Shimizu, Y.; Gotoh, H.; Hattori, S. Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Eng. 2021, 226, 108652. [Google Scholar] [CrossRef]
- Huang, S.M.; Qiu, D.; Wu, Z.; Yang, M.; Zeng, S.; Chen, Y. Fluid flow and heat transfer across a curved hollow fiber membrane tube bank (CHFMTB): Effects of the tube deformations. Int. J. Heat Mass Transf. 2018, 116, 471–483. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Air density | 1.23 | kg/m3 |
Aerodynamic viscosity | 1.89 × 10−5 | kg/m·s−1 |
Membrane material density | 1610 | kg/m−3 |
Membrane Young’s modulus | 280 | MPa |
Membrane Poisson’s ratio | 0.38 | - |
Fiber outer diameter | 1.7 | mm |
Fiber inner diameter | 1.5 | mm |
Fiber length | 100 | mm |
Mesh Number | Maximum Deformation (mm) | Maximum Equivalent Stress (MPa) |
---|---|---|
55,110 | 0.0428 | 0.0526 |
108,300 | 0.0433 | 0.0536 |
433,000 | 0.0434 | 0.0538 |
Air Velocity (m2/s) | Amplitude in the x Direction (mm) | Amplitude in the y Direction (mm) | ||||
---|---|---|---|---|---|---|
Experimental (mm) | Numerical (mm) | Deviation (%) | Experimental (mm) | Numerical (mm) | Deviation (%) | |
1.5 | 0.0266 | 0.027 | 1.51 | 0.0446 | 0.047 | 5.38 |
6 | 0.312 | 0.32 | 2.56 | 0.0226 | 0.023 | 1.76 |
10.5 | 0.758 | 0.76 | 0.26 | 0.051 | 0.05 | −1.96 |
Frequency (Hz) | Air Velocity (1.5 m/s) | |||
---|---|---|---|---|
100 (mm) | 200 (mm) | 300 (mm) | 400 (mm) | |
f1 | 83.94 | 22.09 | 11.95 | 5.23 |
f2 | 83.98 | 28.53 | 15.82 | 7.26 |
f3 | 230.15 | 60.01 | 29.54 | 14.48 |
f4 | 230.16 | 60.01 | 29.54 | 14.50 |
f5 | 448.1 | 117.63 | 54.74 | 28.37 |
f6 | 448.1 | 117.77 | 54.74 | 28.41 |
Frequency (Hz) | Air Velocity (3 m/s) | |||
---|---|---|---|---|
100 (mm) | 200 (mm) | 300 (mm) | 400 (mm) | |
f1 | 84.01 | 24.78 | 12.47 | 7.37 |
f2 | 84.17 | 30.82 | 16.93 | 9.93 |
f3 | 230.24 | 63.23 | 30.35 | 16.30 |
f4 | 230.24 | 63.23 | 30.35 | 16.30 |
f5 | 448.19 | 119.27 | 55.69 | 30.31 |
f6 | 448.21 | 119.8 | 56.05 | 31.20 |
Frequency (Hz) | Air Velocity (4.5 m/s) | |||
---|---|---|---|---|
100 (mm) | 200 (mm) | 300 (mm) | 400 (mm) | |
f1 | 84.29 | 26.10 | 12.77 | 8.25 |
f2 | 85.01 | 33.60 | 17.44 | 11.95 |
f3 | 230.62 | 65.06 | 30.83 | 20.78 |
f4 | 230.62 | 65.07 | 30.83 | 20.30 |
f5 | 448.61 | 121.37 | 56.26 | 35.89 |
f6 | 448.66 | 121.92 | 56.29 | 36.17 |
Frequency (Hz) | Air Velocity (6 m/s) | |||
---|---|---|---|---|
100 (mm) | 200 (mm) | 300 (mm) | 400 (mm) | |
f1 | 84.97 | 26.57 | 13.41 | 9.48 |
f2 | 87.04 | 34.82 | 18.90 | 14.39 |
f3 | 231.54 | 65.06 | 31.86 | 21.17 |
f4 | 231.56 | 65.94 | 31.86 | 21.17 |
f5 | 449.63 | 121.94 | 57.49 | 36.38 |
f6 | 449.8 | 122.77 | 57.72 | 36.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Chen, J.; Li, N.; Dong, Y.; Zhong, T.; Zeng, S.; Dong, C. Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction. Membranes 2023, 13, 233. https://doi.org/10.3390/membranes13020233
Liang C, Chen J, Li N, Dong Y, Zhong T, Zeng S, Dong C. Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction. Membranes. 2023; 13(2):233. https://doi.org/10.3390/membranes13020233
Chicago/Turabian StyleLiang, Caihang, Jiaxing Chen, Nanfeng Li, Yanfang Dong, Tao Zhong, Si Zeng, and Chuanshuai Dong. 2023. "Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction" Membranes 13, no. 2: 233. https://doi.org/10.3390/membranes13020233
APA StyleLiang, C., Chen, J., Li, N., Dong, Y., Zhong, T., Zeng, S., & Dong, C. (2023). Vibration Characteristic Analysis of Hollow Fiber Membrane for Air Dehumidification Using Fluid-Structure Interaction. Membranes, 13(2), 233. https://doi.org/10.3390/membranes13020233