Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Sodium Alginate and Crosslinked Alginates
2.3. Preparation of Composite Membranes from Crosslinked Alginate
2.4. Research of Nanofiltration Properties
3. Results
3.1. Study of the Original Polymer—Sodium Alginate
3.2. Study of the Alginate Crosslinking
3.3. Effect of Metal Cations on the Mechanical and Nanofiltration Properties of Membranes Based on Crosslinked Alginates
3.4. Comparison of Properties of Membranes Based on Crosslinked Alginates with Membranes Based on Synthetic Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchetti, P.; Solomon, M.F.J.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef] [PubMed]
- Rundquist, E.M.; Pink, C.J.; Livingston, A.G. Organic solvent nanofiltration: A potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chem. 2012, 14, 2197–2205. [Google Scholar] [CrossRef]
- Kim, J.F.; Szekely, G.; Schaepertoens, M.; Valtcheva, I.B.; Jimenez-Solomon, M.F.; Livingston, A.G. In Situ Solvent Recovery by Organic Solvent Nanofiltration. ACS Sustain. Chem. Eng. 2014, 2, 2371–2379. [Google Scholar] [CrossRef]
- Filippov, A.N.; Ivanov, V.I.; Yushkin, A.A.; Volkov, V.V.; Bogdanova, Y.G.; Dolzhikova, V.D. Simulation of the onset of flow through a PTMSP-based polymer membrane during nanofiltration of water-methanol mixture. Pet. Chem. 2015, 55, 347–362. [Google Scholar] [CrossRef]
- Kim, J.F.; Székely, G.; Valtcheva, I.B.; Livingston, A.G. Increasing the sustainability of membrane processes through cascade approach and solvent recovery—Pharmaceutical purification case study. Green Chem. 2014, 16, 133–145. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Gould, R.M.; White, L.S.; Wildemuth, C.R. Membrane separation in solvent lube dewaxing. Environ. Prog. 2001, 20, 12–16. [Google Scholar] [CrossRef]
- Boam, A.; Nozari, A. Fine chemical: OSN–A lower energy alternative. Filtr. Sep. 2006, 43, 46–48. [Google Scholar] [CrossRef]
- So, S.; Peeva, L.G.; Tate, E.W.; Leatherbarrow, R.J.; Livingston, A.G. Membrane enhanced peptide synthesis. Chem. Commun. 2010, 46, 2808–2810. [Google Scholar] [CrossRef] [Green Version]
- Székely, G.; Gil, M.; Sellergren, B.; Heggie, W.; Ferreira, F.C. Environmental and economic analysis for selection and engineering sustainable API degenotoxification processes. Green Chem. 2013, 15, 210–225. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Zhang, Y.L.; Wang, Z.X.; Guo, Z.H.; Bai, Y.P.; Shao, L. Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes. Adv. Polym. Technol. 2014, 33, S1. [Google Scholar] [CrossRef]
- Burgal, J.D.S.; Peeva, L.G.; Kumbharkar, S.; Livingston, A. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. J. Membr. Sci. 2015, 479, 105–116. [Google Scholar] [CrossRef]
- Vanherck, K.; Cano-Odena, A.; Koeckelberghs, G.; Dedroog, T.; Vankelecom, I. A simplified diamine crosslinking method for PI nanofiltration membranes. J. Membr. Sci. 2010, 353, 135–143. [Google Scholar] [CrossRef]
- Siddique, H.; Bhole, Y.; Peeva, L.; Livingston, A. Pore preserving crosslinkers for polyimide OSN membranes. J. Membr. Sci. 2014, 465, 138–150. [Google Scholar] [CrossRef]
- Dutczak, S.; Cuperus, F.; Wessling, M.; Stamatialis, D. New crosslinking method of polyamide–imide membranes for potential application in harsh polar aprotic solvents. Sep. Purif. Technol. 2013, 102, 142–146. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2012, 38, 874–896. [Google Scholar] [CrossRef]
- Strużyńska-Piron, I.; Loccufier, J.; Vanmaele, L.; Vankelecom, I.F.J. Synthesis of solvent stable polymeric membranes via UV depth-curing. Chem. Commun. 2013, 49, 11494–11496. [Google Scholar] [CrossRef]
- Yushkin, A.A.; Efimov, M.N.; Malakhov, A.O.; Karpacheva, G.P.; Bondarenko, G.; Marbelia, L.; Vankelecom, I.F.; Volkov, A.V. Creation of highly stable porous polyacrylonitrile membranes using infrared heating. React. Funct. Polym. 2020, 158, 104793. [Google Scholar] [CrossRef]
- Vankelecom, I.F.J.; De Smet, K.; Gevers, L.E.M.; Jacobs, P.A. Nanofiltration: Principles and Applications; (Miner, G.) Elsevier: Amsterdam, The Netherlands, 2005; Volume 97, p. 121. ISBN 1856174050. [Google Scholar]
- Valtcheva, I.B.; Kumbharkar, S.C.; Kim, J.F.; Bhole, Y.; Livingston, A.G. Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 2014, 457, 62–72. [Google Scholar] [CrossRef]
- Anokhina, T.S.; Ignatenko, V.Y.; Kostyuk, A.V.; Ilyin, S.O.; Volkov, A.V.; Antonov, S.V. The effect of the nature of a coagulant on the nanofiltration properties of cellulose membranes formed from solutions in ionic media. Membr. Membr. Technol. 2020, 2, 149–158. [Google Scholar] [CrossRef]
- Clasen, C.; Wilhelms, T.; Kulicke, W.-M. Formation and characterization of chitosan membranes. Biomacromolecules 2006, 7, 3210–3222. [Google Scholar] [CrossRef] [PubMed]
- Burts, K.; Plisko, T.; Dmitrenko, M.; Zolotarev, A.; Kuzminova, A.; Bildyukevich, A.; Ermakov, S.; Penkova, A. Novel thin film nanocomposite membranes based on chitosan succinate modified with fe-btc for enhanced pervaporation dehydration of isopropanol. Membranes 2022, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Kuzminova, A.; Dmitrenko, M.; Mazur, A.; Ermakov, S.; Penkova, A. Novel pervaporation membranes based on biopolymer sodium alginate modified by FeBTC for isopropanol dehydration. Sustainability 2021, 13, 6092. [Google Scholar] [CrossRef]
- Anokhina, T.; Dmitrieva, E.; Volkov, A. Recovery of model pharmaceutical compounds from water and organic solutions with alginate-based composite membranes. Membranes 2022, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Sultan, M.; Islam, A.; Sabir, A.; Hafeez, S.; Bibi, I.; Ahmed, M.N.; Khan, S.M.; Khan, R.U.; Iqbal, M. Sodium alginate blended membrane with polyurethane: Desalination performance and antimicrobial activity evaluation. Int. J. Biol. Macromol. 2021, 182, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, M.H.; Pérez-Manríquez, L.; Puspasari, T.; Scholes, C.A.; Kentish, S.E.; Peinemann, K.-V. A catechin/cellulose composite membrane for organic solvent nanofiltration. J. Membr. Sci. 2018, 567, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Puspasari, T.; Chakrabarty, T.; Genduso, G.; Peinemann, K.-V. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes. J. Mater. Chem. A 2018, 6, 13685–13695. [Google Scholar] [CrossRef]
- Hardian, R.; Alammar, A.; Holtzl, T.; Szekely, G. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends. J. Membr. Sci. 2022, 658, 120743. [Google Scholar] [CrossRef]
- Park, S.Y.; Marsh, K.S.; Rhim, J.W. Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J. Food Sci. 2002, 67, 194–197. [Google Scholar] [CrossRef]
- Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 2014, 19, 32–40. [Google Scholar] [CrossRef]
- Yang, C.; Szekely, G. Ultrathin 12-nm-thick solvent-resistant composite membranes from biosourced dialdehyde starch and priamine building blocks. Adv. Membr. 2022, 2, 100041. [Google Scholar] [CrossRef]
- Schleeh, T.; Madau, M.; Roessner, D. Synthesis enhancements for generating highly soluble tetrabutylammonium alginates in organic solvents. Carbohydr. Polym. 2014, 114, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Rhim, J.-W. Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci. Technol. 2004, 37, 323–330. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef]
- Alginates: Biology and Applications; Rehm, B.H. (Ed.) Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 13. [Google Scholar] [CrossRef]
- Kuzminova, A.I.; Dmitrenko, M.E.; Poloneeva, D.Y.; Selyutin, A.A.; Mazur, A.S.; Emeline, A.V.; Mikhailovskii, V.Y.; Solovyev, N.D.; Ermakov, S.S.; Penkova, A.V. Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J. Membr. Sci. 2021, 626, 119194. [Google Scholar] [CrossRef]
- Dudek, G.; Turczyn, R.; Djurado, D. Collation Efficiency of Poly(Vinyl Alcohol) and alginate membranes with iron-based magnetic organic/inorganic fillers in pervaporative dehydration of ethanol. Materials 2020, 13, 4152. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Kuzminova, A.; Lahderanta, E.; Solovyev, N.; Penkova, A. Modification approaches to enhance dehydration properties of sodium alginate-based pervaporation membranes. Membranes 2021, 11, 255. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S. Sodium alginate/alumina composite biomembrane preparation and performance in DMFC application. Polym. Test. 2021, 81, 106183. [Google Scholar] [CrossRef]
- Kashima, K.; Inage, T.; Yamaguchi, Y.; Imai, M. Tailorable regulation of mass transfer channel in environmentally friendly calcium alginate membrane for dye removal. J. Environ. Chem. Eng. 2021, 9, 105210. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, B.; Zhao, K.; Wei, J.; Guo, J.; Cui, W.; Jiang, S.; Liu, D.; Li, J. A free-standing calcium alginate/polyacrylamide hy-drogel nanofiltration membrane with high anti-fouling performance: Preparation and characterization. Desalination 2015, 365, 234–241. [Google Scholar] [CrossRef]
- Chen, X.; Gao, X.; Wang, W.; Wang, D.; Gao, C. Study of sodium alginate/polysulfone composite nanofiltration membrane. Desalination Water Treat. 2010, 18, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, C.; Ge, T.; Dai, Y.; Wang, R. Performance study of sodium alginate-nonwoven fabric composite membranes for dehumidification. Appl. Therm. Eng. 2018, 128, 214–224. [Google Scholar] [CrossRef]
- Dudek, G.; Gnus, M.; Strzelewicz, A.; Turczyn, R.; Krasowska, M. The influence of metal oxides on the separation properties of hybrid alginate membranes. Sep. Sci. Technol. 2017, 53, 1178–1190. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Kim, S.J.; Lee, K.-H. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration. Sep. Purif. Technol. 2014, 137, 21–27. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Zolotarev, A.; Liamin, V.; Kuzminova, A.; Mazur, A.; Semenov, K.; Ermakov, S.; Penkova, A. Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers 2021, 13, 674. [Google Scholar] [CrossRef]
- Yeom, C.K.; Jegal, J.G.; Lee, K.H. Characterization of relaxation phenomena and permeation behaviors in sodium alginate membrane during pervaporation separation of ethanol-water mixture. J. Appl. Polym. Sci. 1996, 62, 1561–1576. [Google Scholar] [CrossRef]
- Huang, R.; Pal, R.; Moon, G. Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. J. Membr. Sci. 1999, 160, 101–113. [Google Scholar] [CrossRef]
- Nigiz, F.U.; Hilmioglu, N.D. Pervaporation of ethanol/water mixtures by zeolite filled sodium alginate membrane. Desalination Water Treat. 2012, 51, 637–643. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, J.; Tan, Y.; Hao, L.; Ma, Y.; Wu, Y.; Zhang, H.; Xia, Y.; Sui, K. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr. Polym. 2018, 205, 125–134. [Google Scholar] [CrossRef]
- Rocher, V.; Bee, A.; Siaugue, J.-M.; Cabuil, V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 2010, 178, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Rokhati, N.; Istirokhatun, T.; Samsudin, A.M. Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. J. Renew. Energy Dev. 2016, 5, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Donati, I.; Paoletti, S. Material Properties of Alginates; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–53. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, X.; Wei, J.; Li, J.; Zhou, X.; Liu, D.; Liu, Z.; Li, J. Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance. J. Membr. Sci. 2015, 492, 536–546. [Google Scholar] [CrossRef]
- Metecan, A.; Cihanoğlu, A.; Altinkaya, S.A. A positively charged loose nanofiltration membrane fabricated through complexing of alginate and polyethyleneimine with metal ions on the polyamideimide support for dye desalination. Chem. Eng. J. 2021, 416, 128946. [Google Scholar] [CrossRef]
- Li, G.; Zhang, G.; Sun, R.; Wong, C.-P. Mechanical strengthened alginate/polyacrylamide hydrogel crosslinked by barium and ferric dual ions. J. Mater. Sci. 2017, 52, 8538–8545. [Google Scholar] [CrossRef]
- Aburabie, J.H.; Puspasari, T.; Peinemann, K.V. Alginate-based membranes: Paving the way for green organic solvent nanofiltration. J. Membr. Sci. 2020, 596, 117615. [Google Scholar] [CrossRef]
- Dmitrieva, E.S.; Pankratova, E.E.; Anokhina, T.S.; Vinokurov, V.V.; Volkov, A.V. Crosslinked Sodium Alginate as a Material for Nanolfiltration Protonic and Aprotonic Solvents. In Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2021; Volume 899, pp. 745–751. [Google Scholar] [CrossRef]
- Chhatbar, M.; Meena, R.; Prasad, K.; Siddhanta, A. Microwave assisted rapid method for hydrolysis of sodium alginate for M/G ratio determination. Carbohydr. Polym. 2009, 76, 650–656. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Q.; He, B.; Liao, B.; Li, X.; Hu, M.; Ji, Y.; Cui, Z.; Younas, M.; Li, J. An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer. J. Mater. Chem. A 2020, 8, 5275–5283. [Google Scholar] [CrossRef]
- Zhang, W.; He, G.; Gao, P.; Chen, G. Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol. 2003, 30, 27–35. [Google Scholar] [CrossRef]
- Ishevsky, A.; Uspenskaya, M.; Gunkova, P.; Davydov, I.; Vasilevskaya, I. Uses of alginates in the food industry. Bull. St. Petersburg State Inst. Technol. (Tech. Univ.) 2019, 51, 61–69. [Google Scholar] [CrossRef]
- Zhou, Q.; Kang, H.; Bielec, M.; Wu, X.; Cheng, Q.; Wei, W.; Dai, H. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 2018, 197, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll. 2018, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Daemi, H.; Barikani, M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.; Veerapur, R.; Bhat, S.; Madhusoodana, C.; Aminabhavi, T. Hybrid composite membranes of sodium alginate for pervaporation dehydration of 1,4-dioxane and tetrahydrofuran. Desalination Water Treat. 2009, 3, 11–20. [Google Scholar] [CrossRef]
- Barankova, E.; Tan, X.; Villalobos, L.F.; Litwiller, E.; Peinemann, K.-V. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-Free Metal-Organic Framework Composite Membrane. Angew. Chem. Int. Ed. 2017, 56, 2965–2968. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, L.F.; Karunakaran, M.; Peinemann, K.-V. Complexation-Induced Phase Separation: Preparation of Composite Membranes with a Nanometer-Thin Dense Skin Loaded with Metal Ions. Nano Lett. 2015, 15, 3166–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Bi, X.; Shi, Y.; Shi, Y.; Zhang, Y.; Jin, J.; Wang, Z. Thin Films Based on polyimide/metal–Organic framework nanoparticle composite membranes with substantially improved stability for CO2/CH4 separation. ACS Appl. Nano Mater. 2022, 5, 8997–9007. [Google Scholar] [CrossRef]
- Zheng, D.; Hua, D.; Cheng, X.; Pan, J.; Ibrahim, A.; Hua, H.; Zhang, P.; Cha, X.; Xu, K.; Zhan, G. Polyamide composite membranes for enhanced organic solvent nanofiltration performance by metal ions assisted interfacial polymerization method. AIChE J. 2022, 69, e17896. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, S.; Xiong, S.; Yi, M.; Wang, Y. Coordination-crosslinked polyimide supported membrane for ultrafast molecular separation in multi-solvent systems. Chem. Eng. J. 2021, 427, 130941. [Google Scholar] [CrossRef]
- Hardian, R.; Pogany, P.; Lee, Y.M.; Szekely, G. Molecular sieving using metal–polymer coordination membranes in organic media. J. Mater. Chem. A 2021, 9, 14400–14410. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Ma, D.; Ardakani, P.N. Nanocomposite membranes for organic solvent nanofiltration. Sep. Purif. Rev. 2018, 49, 177–206. [Google Scholar] [CrossRef]
- Hermans, S.; Mariën, H.; Van Goethem, C.; Vankelecom, I.F. Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration. Curr. Opin. Chem. Eng. 2015, 8, 45–54. [Google Scholar] [CrossRef]
- Thi, H.N.; Nguyen, B.; Kim, J. Sustainable Fabrication of Organic Solvent Nanofiltration Membranes. Membranes 2020, 11, 19. [Google Scholar] [CrossRef]
Men+ | Al3+ | Ca2+ | Fe3+ | Zn2+ | Cu2+ | Cr3+ |
---|---|---|---|---|---|---|
ω(Men+), mol. % | 0.55 | 0.46 | 0.44 | 0.37 | 0.39 | 0.32 |
ω(Men+), wt. % | 15.0 | 18.4 | 24.9 | 24.0 | 25.0 | 16.7 |
ω(Na+), wt. % | 0 | 0 | 0 | 0 | 0 | 0 |
Men+ | Zn2+ | Cu2+ | Ca2+ | Al3+ | Fe3+ | Cr3+ |
---|---|---|---|---|---|---|
Ratom, pm | 142 | 145 | 197 | 118 | 156 | 166 |
Rion, pm | 83 | 96 | 99 | 57 | 63 | 64 |
Men+ | σB, MPa | PEtOH | PDMF | PMP |
---|---|---|---|---|
Cr3+ | 6 | 0.2 | 0.1 | 0.1 |
Cu2+ | 23 | 1.3 | 1.1 | 0.9 |
Ca2+ | 111 | 2.3 | 1.0 | 0.4 |
Al3+ | 97 | 2.6 | 2.1 | 0.8 |
Fe3+ | 62 | 3.9 | 4.4 | 1.3 |
Zn2+ | 49 | 7.6 | 5.5 | 2.3 |
Men+ | PEtOH + R, | REtOH + R, % | PDMF + R | RDMF + R, % | PMP + R | RMP + R, % |
---|---|---|---|---|---|---|
Cr3+ | 0.01 | 98 | 0.01 | 90 | 0.01 | 90 |
Cu2+ | 1.50 | 94 | 0.40 | 83 | 0.60 | 51 |
Ca2+ | 0.45 | 65 | 0.20 | 87 | 0.10 | 93 |
Al3+ | 0.50 | 97 | 0.40 | 83 | 0.20 | 83 |
Fe3+ | 1.50 | 97 | 2.20 | 63 | 2.00 | 14 |
Zn2+ | 5.60 | 57 | 2.00 | 27 | 0.70 | 11 |
Men+ | RRemazolBrilliantBlueR (MW = 626) | ROrangeII (MW = 350) |
---|---|---|
Cr3+ | 98% | 90% |
Fe3+ | 97% | 10% |
Al3+ | 97% | 13% |
Zn2+ | 57% | 8% |
Ca2+ | 65% | 10% |
Cu2+ | 94% | 47% |
Polymer | Solute (MW) | Psolvent + solute | R | Ref. |
---|---|---|---|---|
Solvent–EtOH | ||||
GO + Pebax/PAN | Brilliant Blue R (826) | 1.90 | 95 | [75] |
Alginate-Fe | Remazol Brilliant Blue R (626) | 1.50 | 97 | The present work |
GNPs/CA | Bromothymol blue (624) | 1.50 | 82 | [75] |
POSS + Catechol/PI | Rose Bengal (1017) | 1.26 | 99 | [75] |
(GO + PEI)/ PAN | PEG (200) | 1.10 | 97 | [75] |
MIL-53 (Al)/PMIA | Brilliant Blue G (854) | 0.70 | 94 | [75] |
Alginate-Al | Remazol Brilliant Blue R (626) | 0.50 | 97 | The present work |
Solvent–DMF | ||||
Alginate-Fe | Remazol Brilliant Blue R (626) | 2.20 | 63 | The present work |
PA/crosslinked P84 PI | Styrene oligomers (236) | 1.50 | 91 | [76] |
Alginate-Al | Remazol Brilliant Blue R (626) | 0.40 | 83 | The present work |
PAES | Styrene oligomer (1595) | 0.37 | 99 | [77] |
Alginate-Ca | Vitamin B12 (1355) | 0.23 | 70 | [59] |
(PDDA/SPEEK)/ (PAN-H/Si) | Rose Bengal (1017) | 0.07 | 89 | [76] |
PPy/PAN-H | Rose Bengal (1017) | 0.05 | 91 | [76] |
(PS-b-PEO/PAA) /alumina | Ethylene glycol Oligomers (420) | 0.02 | 78 | [76] |
Alginate-Cr | Remazol Brilliant Blue R (626) | 0.01 | 90 | The present work |
Solvent–MP | ||||
Multilayer GO/nylon | Methyl Orange (327) | 0.80 | 99 | [75] |
Alginate-Al | Remazol Brilliant Blue R (626) | 0.20 | 83 | The present work |
Alginate-Ca | Vitamin B12 (1355) | 0.10 | 80 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrieva, E.; Raeva, A.; Razlataya, D.; Anokhina, T. Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties. Membranes 2023, 13, 244. https://doi.org/10.3390/membranes13020244
Dmitrieva E, Raeva A, Razlataya D, Anokhina T. Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties. Membranes. 2023; 13(2):244. https://doi.org/10.3390/membranes13020244
Chicago/Turabian StyleDmitrieva, Evgenia, Alisa Raeva, Daria Razlataya, and Tatyana Anokhina. 2023. "Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties" Membranes 13, no. 2: 244. https://doi.org/10.3390/membranes13020244
APA StyleDmitrieva, E., Raeva, A., Razlataya, D., & Anokhina, T. (2023). Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties. Membranes, 13(2), 244. https://doi.org/10.3390/membranes13020244