FAPbBr3 Perovskite Nanocrystals Embedded in Poly(L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Nanocrystals Embedded PLLA Electrospun NFs
2.3. Synthesis of FAPbBr3 Perovskite NCs
3. Characterization
4. Results and Discussion
4.1. Morphology of FAPbBbr3 NCs–PLLA Nanofibres
4.2. The Crystallinity of FAPbBbr3 NCs–PLLA Nanofibrous Membranes
4.3. Surface Chemistry of the FAPbBr3 NCs–PLLA Nanofibres
4.4. Air and Water Stability of Composite Membranes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hai, J.; Li, H.; Zhao, Y.; Chen, F.; Peng, Y.; Wang, B. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun. 2017, 53, 5400–5403. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Deng, W.; Zhang, X.; Xu, X.; Zhang, M.; Jie, J.; Zhang, X. Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Res. 2018, 12, 171–176. [Google Scholar] [CrossRef]
- Imran, M.; Mai, B.T.; Goldoni, L.; Cirignano, M.; Jalali, H.B.; Di Stasio, F.; Pellegrino, T.; Manna, L. Switchable Anion Exchange in Polymer-Encapsulated APbX3Nanocrystals Delivers Stable All-Perovskite White Emitters. ACS Energy Lett. 2021, 6, 2844–2853. [Google Scholar] [CrossRef]
- Liu, F.; Ding, C.; Zhang, Y.; Ripolles, T.S.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; et al. Colloidal Synthesis of Air-Stable Alloyed CsSn1-xPbxI3 Perovskite Nanocrystals for Use in Solar Cells. J. Am. Chem. Soc. 2017, 139, 16708–16719. [Google Scholar] [CrossRef]
- Talianov, P.M.; Peltek, O.O.; Masharin, M.; Khubezhov, S.; Baranov, M.A.; Drabavičius, A.; Timin, A.S.; Zelenkov, L.E.; Pushkarev, A.P.; Makarov, S.V.; et al. Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. J. Phys. Chem. Lett. 2021, 12, 8991–8998. [Google Scholar] [CrossRef]
- Bhaumik, S.; Veldhuis, S.A.; Ng, Y.F.; Li, M.; Muduli, S.K.; Sum, T.C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles. Chem. Commun. 2016, 52, 7118–7121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Park, J.; Lee, Y.; Park, J.M.; Kim, J.H.; Kim, J.S.; Lee, H.D.; Jo, S.H.; Cai, X.; Li, L.; et al. Water Passivation of Perovskite Nanocrystals Enables Air-Stable Intrinsically Stretchable Color-Conversion Layers for Stretchable Displays. Adv. Mater. 2020, 32, 2001989. [Google Scholar] [CrossRef]
- Raja, S.N.; Bekenstein, Y.; Koc, M.A.; Fischer, S.; Zhang, D.; Lin, L.; Ritchie, R.O.; Yang, P.; Alivisatos, A.P. Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Chen, Z.; Li, Z.; Yan, L.; Zhang, D.; Liu, L.; Xu, Q.H.; Ma, Y.; Huang, F.; Yip, H.L.; et al. Polymer-Assisted in Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 42564–42572. [Google Scholar] [CrossRef]
- Hou, S.; Guo, Y.; Tang, Y.; Quan, Q. Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. ACS Appl. Mater. Interfaces 2017, 9, 18417–18422. [Google Scholar] [CrossRef]
- Jafari, S.M. Handbook of Food Nanotechnology: Applications and Approaches; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Chen, T.; Huang, M.; Ye, Z.; Hua, J.; Lin, S.; Wei, L.; Xiao, L. Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers. Nano Res. 2021, 14, 1397–1404. [Google Scholar] [CrossRef]
- Wang, Z.; He, H.; Liu, S.; Wang, H.; Zeng, Q.; Liu, Z.; Xiong, Q.; Fan, H.J. Air Stable Organic–Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. Small 2020, 16, e2004409. [Google Scholar] [CrossRef]
- Tsai, P.C.; Chen, J.Y.; Ercan, E.; Chueh, C.C.; Tung, S.H.; Chen, W.C. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning. Small 2018, 14, e1704379. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, C.; Zhou, C.; Wang, T.; Chen, J.; Liu, X.; Lin, J.; Chen, X. Designable and highly stable emissive CsPbI 3 perovskite quantum dots/polyvinylidene fluoride nanofiber composites. Opt. Mater. Express 2022, 12, 109. [Google Scholar] [CrossRef]
- Zia, Q.; Tabassum, M.; Lu, Z.; Khawar, M.T.; Song, J.; Gong, H.; Meng, J.; Li, Z.; Li, J. Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydr. Polym. 2020, 227, 115343. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yin, G.Z.; Wang, D.Y.; Costa, R.D. In Situ Ambient Preparation of Perovskite-Poly(l -lactic acid) Phosphors for Highly Stable and Efficient Hybrid Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13, 21800–21809. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Xu, S.; Zhong, H.; Rogach, A.L.; Bi, W. Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angew. Chemie-Int. Ed. 2018, 57, 9650–9654. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Zhang, R.; Bao, C.; Zhao, H.; Xiang, W.; Liu, W.; Niu, G.; Guo, R.; Zhang, L.; et al. High-Efficiency Formamidinium Lead Bromide Perovskite Nanocrystal-Based Light-Emitting Diodes Fabricated via a Surface Defect Self-Passivation Strategy. Adv. Opt. Mater. 2020, 8, 1901390. [Google Scholar] [CrossRef]
- Li, Q.F.; Wang, J.T.; Tian, B.; Kong, S.; Wang, T.; Wang, Z. Hybridization of CsPbBr3 Perovskite Nanocrystals with Polymer Nanofiber to Improve their Luminescence Stability. Eur. J. Inorg. Chem. 2018, 2018, 4215–4220. [Google Scholar] [CrossRef]
- Hills-Kimball, K.; Nagaoka, Y.; Cao, C.; Chaykovsky, E.; Chen, O. Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange. J. Mater. Chem. C 2017, 5, 5680–5684. [Google Scholar] [CrossRef]
- Han, D.; Imran, M.; Zhang, M.; Chang, S.; Wu, X.G.; Zhang, X.; Tang, J.; Wang, M.; Ali, S.; Li, X.; et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process. ACS Nano 2018, 12, 8808–8816. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, M.; Biesold, G.M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Adv. Mater. 2021, 33, e2005888. [Google Scholar] [CrossRef] [PubMed]
Materials | Polymer Used for Encapsulation | Fabrication Technique | Structure | PL intensity and Stability Parameters | Ref. |
---|---|---|---|---|---|
MAPbBr3 NCs | PM NFs MA, PVDF | Electrospinning | Core-shell NFs | 10 days in the air ≈ 93% | [5] |
CsPbBr3 NCs | PVP, PAN | Electrospinning | NFs | 96 hr exposure in the air ≈ 73% | [6] |
CsPbX3 (X = Cl, Br, and I) QDs | PVP | Electrospinning | NFs | 4 days in water for green emitters | [7] |
CsPbI3 QDs | PVDF | Electrospinning | NFs | 3 days in water ≈ 80% | [4] |
CsPbX3 (X = Cl, Br, and I) NCs | PAN | Electrospinning | Core-shell NFs | 48 hr in water ≈ 50% | [8] |
CsPbBr3 NCs | PVDF-PS | Electrospinning | NFs | 70 days in water ≈ 90% | [9] |
CsPbX3 (X = Cl, Br, and I) QDs | PS, PMMA, poly(styrene-butadiene-styrene) (SBS) | Electrospinning | NFs | 3 months in water ≈ 80% | [10] |
FAPbX3 (X = Cl, Br, and I) QDs | PS, PMMA | Microfluidic electrospinning | NFs | Consistent PL after 5 days immersion in water | [11] |
CsCu2I3, Cs3Cu2I5 | PS | Electrospinning | NFs | Consistent PL after 20 days immersion in water | [12] |
FAPbBr3 NCs | PLLA | Electrospinning | NFs | 45 days in the air ≈ 50%, 10 days in water ≈ 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, M.; Zia, Q.; Li, J.; Khawar, M.T.; Aslam, S.; Su, L. FAPbBr3 Perovskite Nanocrystals Embedded in Poly(L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability. Membranes 2023, 13, 279. https://doi.org/10.3390/membranes13030279
Tabassum M, Zia Q, Li J, Khawar MT, Aslam S, Su L. FAPbBr3 Perovskite Nanocrystals Embedded in Poly(L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability. Membranes. 2023; 13(3):279. https://doi.org/10.3390/membranes13030279
Chicago/Turabian StyleTabassum, Madeeha, Qasim Zia, Jiashen Li, Muhammad Tauseef Khawar, Sameen Aslam, and Lei Su. 2023. "FAPbBr3 Perovskite Nanocrystals Embedded in Poly(L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability" Membranes 13, no. 3: 279. https://doi.org/10.3390/membranes13030279
APA StyleTabassum, M., Zia, Q., Li, J., Khawar, M. T., Aslam, S., & Su, L. (2023). FAPbBr3 Perovskite Nanocrystals Embedded in Poly(L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability. Membranes, 13(3), 279. https://doi.org/10.3390/membranes13030279