Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection
Abstract
:1. Introduction
1.1. Low-Alcohol Beer
1.2. Dealcoholization Processes of Beer
1.3. Polyelectrolyte Multilayer (PEM) Membranes
1.4. Ion Rejection of PEM NF Membranes in Complex Matrices
1.5. Low Rejection Compounds Affecting Dealcoholized Beer Taste
1.6. Aims of This Study
2. Materials and Methods
2.1. Membrane Pilot Equipment and Experiments
2.1.1. Closed-Circuit Membrane Test System
2.1.2. Dealcoholization Process
2.1.3. Membrane and System Cleaning
2.1.4. Simple Salt Rejection Measurements
2.2. Sample Analysis
2.3. Calculations
2.4. Sensory Evaluation
3. Results
3.1. Dealcoholization Process
3.2. Sensory Evaluation
3.2.1. Samples Originating from the Unfiltered Beer Concentrate
- Dealcoholized concentrate: pleasant, malty odor, with a pleasantly sweet taste and a slight lingering adhesive bitter aftertaste.
- The 1:1 diluted concentrate: the pleasant malty odor remained, although the adhesive bitterness decreased.
- After NaCl and KCl addition: pleasant malty taste, perhaps a bit fuller than the previous one, but a bit too salty.
- After NaCl, KCl, and glycerin addition: fuller and rounder flavor than the previous one, with a slight salty taste in the background.
3.2.2. Samples Originating from the Filtered Beer Concentrate
- Dealcoholized concentrate: less distinctive aroma than the yeasty beer, slightly sweet and hop-like, clinging bitterness.
- The 1:1 diluted concentrate: dilution further decreased the aroma, reminiscent of cotton candy. The diluted beer had a distinctly watery taste, with only bitterness being perceivable, but no fullness or sweetness.
- After NaCl and KCl addition: salting did not affect the aroma but complemented the taste; in addition to the bitterness, some fullness was also noticeable.
- After NaCl, KCl, and glycerin addition: out of the last four samples, this one was the best from the sensory point of view, and the addition of glycerin increased the fullness of the flavor.
4. Discussion
4.1. Dealcoholization Process
4.2. Membrane Cleaning and Membrane Characteristics after the Process
4.3. Product Quality
5. Conclusions
- Testing the effect of the temperature of the membrane separation process on taste;
- Instead of direct preconcentration, starting with dilution of the feed, which could help overcoming pressure limits. This leads to longer processing times, although PEM NF membranes are known to swell in higher salinity feeds, which lowers the rejection of organics;
- Testing tighter and/or more pressure tolerant PEM-NF membranes;
- Optimizing the salt and glycerol amount added. The addition of hop aroma concentrates to the final product can further enhance the aroma of these beers;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, P.; Kokole, D.; Llopis, E.J. Production, Consumption, and Potential Public Health Impact of Low- and No-Alcohol Products: Results of a Scoping Review. Nutrients 2021, 13, 3153. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of Special Beer Processes and Potential Health Benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Nehra, M.; Grover, N.; Gahlawat, S. Non Alcoholic Beers: Review and Methods. Madridge J. Food Technol. 2022, 7, 200–206. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-Alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Güzel, N.; Güzel, M.; Savaş Bahçeci, K. Chapter 6—Nonalcoholic Beer. In Trends in Non-Alcoholic Beverages; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 167–200. [Google Scholar]
- GEA, Craft Beer and Beyond. Available online: https://www.brewersassociation.org/wp-content/uploads/2020/04/CBC-Online-Sponsored-Seminar-Presentation-Craft-Beer-Beyond-Presented-by-GEA-North-America.pdf (accessed on 10 February 2023).
- Jiang, Z.; Yang, B.; Liu, X.; Zhang, S.; Shan, J.; Liu, J.; Wang, X. A Novel Approach for the Production of a Non-Alcohol Beer (≤0.5% Abv) by a Combination of Limited Fermentation and Vacuum Distillation. J. Inst. Brew. 2017, 123, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Rettberg, N.; Lafontaine, S.; Schubert, C.; Dennenlöhr, J.; Knoke, L.; Diniz Fischer, P.; Fuchs, J.; Thörner, S. Effect of Production Technique on Pilsner-Style Non-Alcoholic Beer (NAB) Chemistry and Flavor. Beverages 2022, 8, 4. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Liang, Y.; Qiang, W.; Atuna, R.A.; Amagloh, F.K.; Morata, A.; Han, S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes 2021, 11, 957. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Obhođaš, J.; Vinković, A.; Pichler, D.; Mesić, J.; Pichler, A. Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Volatile Compounds and Chemical Composition. Membranes 2021, 11, 320. [Google Scholar] [CrossRef]
- Ramsey, I.; Yang, Q.; Fisk, I.; Ayed, C.; Ford, R. Assessing the Sensory and Physicochemical Impact of Reverse Osmosis Membrane Technology to Dealcoholize Two Different Beer Styles. Food Chem. X 2021, 10, 100121. [Google Scholar] [CrossRef]
- Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Production and Characterization of Alcohol-Free Beer by Membrane Process. Food Bioprod. Process. 2015, 94, 158–168. [Google Scholar] [CrossRef]
- Julian, H.; Khoiruddin, K.; Sutrisna, P.D.; Machmudah, S.; Wenten, I.G. Latest Development in Low-Pressure Osmotic-Based Membrane Separation for Liquid Food Concentration: A Review. Curr. Opin. Food Sci. 2022, 48, 100947. [Google Scholar] [CrossRef]
- Dealcoholisation Module. Available online: https://www.alfalaval.com/products/process-solutions/brewery-solutions/beer-dealcoholisation-modules/dealcoholisation-module/ (accessed on 30 January 2023).
- Memo3—Dealcoholization via Membrane Technology—Nonalcoholic Beer. Available online: https://www.memo3.ch/en/nonalcoholic/ (accessed on 30 January 2023).
- GEA Solutions for Producing Alcohol-Free Beer. Available online: https://www.gea.com/en/stories/alcohol-free-beer.jsp (accessed on 30 January 2023).
- Falkenberg, A. Removal of Alcohol from Beer Using Membrane Processes. In Masteŕs Thesis in Brewing Science and Technology; University of Copenhagen Faculty of Science: Frederiksberg, Denmark, 2014. [Google Scholar]
- Catarino, M.; Mendes, A.; Madeira, L.M.; Ferreira, A. Alcohol Removal From Beer by Reverse Osmosis. Sep. Sci. Technol. 2007, 42, 3011–3027. [Google Scholar] [CrossRef]
- Figueroa Paredes, D.A.; Laoretani, D.S.; Morero, B.; Sánchez, R.J.; Iribarren, O.A.; Espinosa, J. Screening of Membrane Technologies in Concentration of Bitter Extracts with Simultaneous Alcohol Recovery: An Approach Including Both Economic and Environmental Issues. Sep. Purif. Technol. 2020, 237, 116339. [Google Scholar] [CrossRef]
- Labanda, J.; Vichi, S.; Llorens, J.; López-Tamames, E. Membrane Separation Technology for the Reduction of Alcoholic Degree of a White Model Wine. LWT-Food Sci. Technol. 2009, 42, 1390–1395. [Google Scholar] [CrossRef]
- Banvolgyi, S.; Bahçeci, K.S.; Bekassy-Molnar, E.; Vatai, G.; Bekassy, S. Partial Dealcoholization of Red Wine by Nanofiltration and Its Effect on Anthocyanin and Resveratrol Levels. Food Sci. Technol. Int. 2016, 22, 677–687. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef] [Green Version]
- Sewerin, T.; Elshof, M.G.; Matencio, S.; Boerrigter, M.; Yu, J.; de Grooth, J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. Membranes 2021, 11, 890. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Ng, C.Y. A Review on Nanofiltration Membrane Fabrication and Modification Using Polyelectrolytes: Effective Ways to Develop Membrane Selective Barriers and Rejection Capability. Adv. Colloid Interface Sci. 2013, 197–198, 85–107. [Google Scholar] [CrossRef]
- Durmaz, E.N.; Sahin, S.; Virga, E.; de Beer, S.; de Smet, L.C.P.M.; de Vos, W.M. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS Appl. Polym. Mater. 2021, 3, 4347–4374. [Google Scholar] [CrossRef]
- Wang, C.; Park, M.J.; Yu, H.; Matsuyama, H.; Drioli, E.; Shon, H.K. Recent Advances of Nanocomposite Membranes Using Layer-by-Layer Assembly. J. Membr. Sci. 2022, 661, 120926. [Google Scholar] [CrossRef]
- Ji, Y.L.; Gu, B.X.; An, Q.F.; Gao, C.J. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes. Polymers 2017, 9, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, N.; Ahmadiannamini, P.; Hoogenboom, R.; Vankelecom, I.F.J. Layer-by-Layer Preparation of Polyelectrolyte Multilayer Membranes for Separation. Polym. Chem. 2014, 5, 1817–1831. [Google Scholar] [CrossRef]
- Oatley-Radcliffe, D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration Membranes and Processes: A Review of Research Trends over the Past Decade. J. Water Process Eng. 2017, 19, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Pontie, M.; Bilongo, T.G.; Roesink, E.; de Grooth, J.; Dinaux, C.; Hannachi, A.; Charlot, F.; Oubaid, F.; Mrimi, S.; Shabani, M. Confronting Two Nanofiltration Membranes for Lithium-Calcium Selective Separation in Natural Brines. Emergent Mater. 2022, 5, 1495–1505. [Google Scholar] [CrossRef]
- He, R.; Dong, C.; Xu, S.; Liu, C.; Zhao, S.; He, T. Unprecedented Mg2+/Li+ Separation Using Layer-by-Layer Based Nanofiltration Hollow Fiber Membranes. Desalination 2022, 525, 115492. [Google Scholar] [CrossRef]
- Thermodynamic Perspective on Negative Retention Effects in Nanofiltration of Concentrated Sodium Chloride Solutions. Sep. Purif. Technol. 2020, 250, 117242. [CrossRef]
- Gilron, J.; Gara, N.; Kedem, O. Experimental Analysis of Negative Salt Rejection in Nanofiltration Membranes. J. Membr. Sci. 2001, 185, 223–236. [Google Scholar] [CrossRef]
- Krieg, H.M.; Modise, S.J.; Keizer, K.; Neomagus, H.W.J.P. Salt Rejection in Nanofiltration for Single and Binary Salt Mixtures in View of Sulphate Removal. Desalination 2005, 171, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Yaroshchuk, A.E. Negative Rejection of Ions in Pressure-Driven Membrane Processes. Adv. Colloid Interface Sci. 2008, 139, 150–173. [Google Scholar] [CrossRef] [PubMed]
- Evdochenko, E.; Kamp, J.; Dunkel, R.; Nikonenko, V.V.; Wessling, M. Charge Distribution in Polyelectrolyte Multilayer Nanofiltration Membranes Affects Ion Separation and Scaling Propensity. J. Membr. Sci. 2021, 636, 119533. [Google Scholar] [CrossRef]
- Labban, O.; Chong, T.H.; Lienhard, J.H. Design and Modeling of Novel Low-Pressure Nanofiltration Hollow Fiber Modules for Water Softening and Desalination Pretreatment. Desalination 2018, 439, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Labban, O.; Liu, C.; Chong, T.H.; Lienhard, J.H. Relating Transport Modeling to Nanofiltration Membrane Fabrication: Navigating the Permeability-Selectivity Trade-off in Desalination Pretreatment. J. Membr. Sci. 2018, 554, 26–38. [Google Scholar] [CrossRef] [Green Version]
- de Grooth, J.; Haakmeester, B.; Wever, C.; Potreck, J.; de Vos, W.M.; Nijmeijer, K. Long Term Physical and Chemical Stability of Polyelectrolyte Multilayer Membranes. J. Membr. Sci. 2015, 489, 153–159. [Google Scholar] [CrossRef]
- Elshof, M.G.; de Vos, W.M.; de Grooth, J.; Benes, N.E. On the Long-Term PH Stability of Polyelectrolyte Multilayer Nanofiltration Membranes. J. Membr. Sci. 2020, 615, 118532. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Zheng, X.; Sun, J. Water-Enabled Self-Healing of Polyelectrolyte Multilayer Coatings. Angew. Chem. Int. Ed. 2011, 50, 11378–11381. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Zhu, G.; Zacharia, N.S. Self-Healing of Bulk Polyelectrolyte Complex Material as a Function of PH and Salt. ACS Appl. Mater. Interfaces 2016, 8, 26258–26265. [Google Scholar] [CrossRef]
- Zhu, Y.; Xuan, H.; Ren, J.; Ge, L. Self-Healing Multilayer Polyelectrolyte Composite Film with Chitosan and Poly(Acrylic Acid). Soft Matter 2015, 11, 8452–8459. [Google Scholar] [CrossRef]
- Ilyas, S.; Joseph, N.; Szymczyk, A.; Volodin, A.; Nijmeijer, K.; de Vos, W.M.; Vankelecom, I.F.J. Weak Polyelectrolyte Multilayers as Tunable Membranes for Solvent Resistant Nanofiltration. J. Membr. Sci. 2016, 514, 322–331. [Google Scholar] [CrossRef]
- Menne, D.; Üzüm, C.; Koppelmann, A.; Wong, J.E.; van Foeken, C.; Borre, F.; Dähne, L.; Laakso, T.; Pihlajamäki, A.; Wessling, M. Regenerable Polymer/Ceramic Hybrid Nanofiltration Membrane Based on Polyelectrolyte Assembly by Layer-by-Layer Technique. J. Membr. Sci. 2016, 520, 924–932. [Google Scholar] [CrossRef]
- Futselaar, H.; Schonewille, H.; Van Der Meer, W. Direct Capillary Nanofiltration—A New High-Grade Purification Concept. Desalination 2002, 145, 75–80. [Google Scholar] [CrossRef]
- Frank, M.; Bargeman, G.; Zwijnenburg, A.; Wessling, M. Capillary Hollow Fiber Nanofiltration Membranes. Sep. Purif. Technol. 2001, 22–23, 499–506. [Google Scholar] [CrossRef]
- Keucken, A.; Liu, X.; Lian, B.; Wang, Y.; Persson, K.M.; Leslie, G. Simulation of NOM Removal by Capillary NF: A Numerical Method for Full-Scale Plant Design. J. Membr. Sci. 2018, 555, 229–236. [Google Scholar] [CrossRef]
- Junker, M.A.; de Vos, W.M.; Lammertink, R.G.H.; de Grooth, J. Bridging the Gap between Lab-Scale and Commercial Dimensions of Hollow Fiber Nanofiltration Membranes. J. Membr. Sci. 2021, 624, 119100. [Google Scholar] [CrossRef]
- Bóna, Á.; Bakonyi, P.; Galambos, I.; Bélafi-Bakó, K.; Nemestóthy, N. Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. Membranes 2020, 10, 252. [Google Scholar] [CrossRef]
- Granger-Delacroix, M.; Albasi, C.; Latapie, L.; Vandenbossche, A.; Nourrit, G.; Causserand, C. Retention of Nine Micropollutants Covering a Wide Range of Physical-Chemical Properties by Negatively Charged Hollow Fiber Nanofiltration Membranes. Available online: https://hal.science/hal-03861639/file/08-06-2022_Micropol&Ecohazard_Manon_Granger-Delacroix.pdf (accessed on 10 February 2023).
- Bartels, C.; Franks, R.; Rybar, S.; Schierach, M.; Wilf, M. The Effect of Feed Ionic Strength on Salt Passage through Reverse Osmosis Membranes. Desalination 2005, 184, 185–195. [Google Scholar] [CrossRef]
- Bargeman, G.; Westerink, J.B.; Guerra Miguez, O.; Wessling, M. The Effect of NaCl and Glucose Concentration on Retentions for Nanofiltration Membranes Processing Concentrated Solutions. Sep. Purif. Technol. 2014, 134, 46–57. [Google Scholar] [CrossRef]
- Luo, J.; Wan, Y. Effects of PH and Salt on Nanofiltration—A Critical Review. J. Membr. Sci. 2013, 438, 18–28. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J.; Elimelech, M. Combined Influence of Natural Organic Matter (NOM) and Colloidal Particles on Nanofiltration Membrane Fouling. J. Membr. Sci. 2005, 262, 27–41. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J.; Elimelech, M. Influence of Colloidal Fouling and Feed Water Recovery on Salt Rejection of RO and NF Membranes. Desalination 2004, 160, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Elimelech, M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. [Google Scholar] [CrossRef]
- Ishigami, T.; Amano, K.; Fujii, A.; Ohmukai, Y.; Kamio, E.; Maruyama, T.; Matsuyama, H. Fouling Reduction of Reverse Osmosis Membrane by Surface Modification via Layer-by-Layer Assembly. Sep. Purif. Technol. 2012, 99, 1–7. [Google Scholar] [CrossRef]
- Saqib, J.; Aljundi, I.H. Membrane Fouling and Modification Using Surface Treatment and Layer-by-Layer Assembly of Polyelectrolytes: State-of-the-Art Review. J. Water Process Eng. 2016, 11, 68–87. [Google Scholar] [CrossRef]
- Ba, C.; Ladner, D.A.; Economy, J. Using Polyelectrolyte Coatings to Improve Fouling Resistance of a Positively Charged Nanofiltration Membrane. J. Membr. Sci. 2010, 347, 250–259. [Google Scholar] [CrossRef]
- Maan, A.M.C.; Hofman, A.H.; Vos, W.M.; Kamperman, M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020, 30, 2000936. [Google Scholar] [CrossRef]
- Virga, E.; Žvab, K.; de Vos, W.M. Fouling of Nanofiltration Membranes Based on Polyelectrolyte Multilayers: The Effect of a Zwitterionic Final Layer. J. Membr. Sci. 2021, 620, 118793. [Google Scholar] [CrossRef]
- de Vos, W.M.; Lindhoud, S. Overcharging and Charge Inversion: Finding the Correct Explanation(s). Adv. Colloid Interface Sci. 2019, 274, 102040. [Google Scholar] [CrossRef]
- Brewing Water Adjustments. Available online: https://byo.com/article/water-adjustments/ (accessed on 7 October 2022).
- Stewart, G.G.; Priest, F.G. (Eds.) Handbook of Brewing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Barnes, T. The complete beer fault guide v. 1.4. January 2011. Available online: https://londonamateurbrewers.co.uk/wp-content/uploads/2015/05/Complete_Beer_Fault_Guide.pdf (accessed on 10 February 2023).
- Zhao, X.; Procopio, S.; Becker, T. Flavor Impacts of Glycerol in the Processing of Yeast Fermented Beverages: A Review. J. Food Sci. Technol. 2015, 52, 7588–7598. [Google Scholar] [CrossRef] [Green Version]
- Gohil, J.M.; Ray, P. A Review on Semi-Aromatic Polyamide TFC Membranes Prepared by Interfacial Polymerization: Potential for Water Treatment and Desalination. Sep. Purif. Technol. 2017, 181, 159–182. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Wang, J.; Liang, Y.; Sheng, W.; Li, J.; Jiang, Y.; Zhang, B. Aroma Improvement of Dealcoholized Merlot Red Wine Using Edible Flowers. Food Chem. 2023, 404, 134711. [Google Scholar] [CrossRef]
- Catarino, M.; Mendes, A. Non-Alcoholic Beer—A New Industrial Process. Sep. Purif. Technol. 2011, 79, 342–351. [Google Scholar] [CrossRef]
- Ramsey, I.; Yang, Q.; Fisk, I.; Ford, R. Understanding the Sensory and Physicochemical Differences between Commercially Produced Non-Alcoholic Lagers, and Their Influence on Consumer Liking. Food Chem. X 2021, 9, 100114. [Google Scholar] [CrossRef] [PubMed]
Sample | Conductivity (μS/cm) | pH | Alcohol (% v/v) | Real Extract (% w/w) |
---|---|---|---|---|
Filtered beer | 1880 | 4.4 | 4.7 | 3.64 |
Unfiltered beer | 1940 | 4.5 | 5.0 | 3.90 |
Dealcoholized beer filtered | 698 | 4.3 | 0.4 | 3.10 |
Dealcoholized beer unfiltered | 797 | 4.4 | 0.4 | 3.21 |
Average permeate from concentration, filtered feed | 1196 | 4.4 | 4.9 | 0.41 |
Average permeate from concentration, unfiltered feed | 1225 | 4.5 | 5.1 | 0.42 |
Average permeate at the end of the process, filtered feed | 545 | 4.3 | 0.9 | 0.16 |
Average permeate at the end of the process, unfiltered feed | 562 | 4.5 | 0.9 | 0.14 |
Sample | Na+ (ppm) | K+ (ppm) | Ca2+ (ppm) | Mg2+ (ppm) | Cl− (ppm) | PO43− (ppm) | SO42− (ppm) |
---|---|---|---|---|---|---|---|
Filtered beer | 17 | 485 | 103 | 24 | 216 | 660 | 62 |
Unfiltered beer | 16 | 583 | 110 | 22 | 241 | 651 | 123 |
Deal. filtered | 3 | 82 | 93 | 18 | 14 | 425 | 56 |
Deal. unfiltered | 4 | 127 | 94 | 19 | 19 | 362 | 103 |
End point permeate of filtered M1 | 5 | 141 | 1 | 1 | 36 | 146 | 3 |
End point permeate of filtered M2 | 5 | 148 | 2 | 1 | 53 | 101 | 1 |
End point permeate of unfiltered M1 | 4 | 150 | 1 | 0 | 33 | 134 | 2 |
End point permeate of unfiltered M2 | 4 | 148 | 1 | 1 | 43 | 87 | 0 |
Feed, Membrane | Na+ | K+ | Ca2+ | Mg2+ | Cl− | PO43− | SO42− |
---|---|---|---|---|---|---|---|
Filtered beer, M1 | 19% | 24% | 99% | 98% | −27% | 82% | 97% |
Filtered beer, M2 | 16% | 20% | 99% | 97% | −48% | 31% | 69% |
Unfiltered beer, M1 | 54% | 47% | >99% | 99% | 22% | 84% | 99% |
Unfiltered beer, M2 | 52% | 48% | >99% | 99% | −33% | 35% | 83% |
Title 1 | MgSO4 Rejection | Na2SO4 Rejection |
---|---|---|
M1, virgin | 96% | 98% |
M2, virgin | 95% | 99% |
M1, after cleaning | 98.8% | 99.6% |
M2, after cleaning | 98.9% | 99.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bóna, Á.; Varga, Á.; Galambos, I.; Nemestóthy, N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection. Membranes 2023, 13, 283. https://doi.org/10.3390/membranes13030283
Bóna Á, Varga Á, Galambos I, Nemestóthy N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection. Membranes. 2023; 13(3):283. https://doi.org/10.3390/membranes13030283
Chicago/Turabian StyleBóna, Áron, Áron Varga, Ildikó Galambos, and Nándor Nemestóthy. 2023. "Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection" Membranes 13, no. 3: 283. https://doi.org/10.3390/membranes13030283
APA StyleBóna, Á., Varga, Á., Galambos, I., & Nemestóthy, N. (2023). Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection. Membranes, 13(3), 283. https://doi.org/10.3390/membranes13030283