Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
- Traditional electrodes containing platinized carbon black and Nafion proton-conducting polymers;
- Structurally modified electrodes containing the addition of CNTs.
2.2. Taunit MD CNTs
2.3. Proton-Exchange Polymer of Nafion Type
2.4. Preparation of Dispersion
2.5. MEA Preparation
2.6. Characterization and Aging Procedures
2.7. Calculations of Electrochemical Characteristics from the Experimental Data
3. Results and Discussion
3.1. Structural Characteristics
3.2. Electrochemical Characteristics
3.3. Microstructure Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.S.; Arefin, P.; Ahmed, K.; Salam, M.A.; Uddin, M.S.; Hossain, T.; Papri, N.; Islam, T. Proton Exchange Membrane Fuel Cell (PEMFC) Durability Factors, Challenges, and Future Perspectives: A Detailed Review. Mater. Sci. Res. India 2021, 18, 217–234. [Google Scholar] [CrossRef]
- Moein-Jahromi, M.; Kermani, M.J.; Movahed, S. Degradation forecast for PEMFC cathode-catalysts under cyclic loads. J. Power Sources 2017, 359, 611–625. [Google Scholar] [CrossRef]
- Wang, J.; Geng, J.; Wang, M.; Hu, X.; Shao, Z.; Zhang, H. Quantification on degradation mechanisms of polymer exchange membrane fuel cell cathode catalyst layers during bus and stationary durability test protocols. J. Power Sources 2022, 521, 230878. [Google Scholar] [CrossRef]
- Thakare, J.; Masud, J. Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts. Energies 2022, 15, 4437. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Siavashi, M.; Yavarinasab, A.; Matian, M.; Chitgar, N.; Wang, L.; Van Herle, J. A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants. Energies 2022, 15, 5081. [Google Scholar] [CrossRef]
- Zhao, J. Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells: Formation, Characterization and Performance. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2019. [Google Scholar]
- Larbi, B.; Alimi, W.; Chouikh, R.; Guizani, A. Effect of porosity and pressure on the PEM fuel cell performance. Int. J. Hydrog. Energy 2013, 38, 8542–8549. [Google Scholar] [CrossRef]
- Mortazavi, M.; Santamaria, A.D.; Chauhan, V.; Benner, J.Z.; Heidari, M.; Médici, E.F. Effect of PEM fuel cell porous media compression on in-plane transport phenomena. J. Power Sources Adv. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 2019, 43, 8739–8752. [Google Scholar] [CrossRef]
- Bruijn, F.A.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and Degradation Issues of PEM Fuel Cell Components. Fuel Cells 2008, 8, 3–22. [Google Scholar] [CrossRef]
- Department of Energy, Durability Working Group. Available online: https://www.energy.gov/eere/fuelcells/durability-working-group (accessed on 4 February 2022).
- Zhao, J.; Li, X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Nakashima, N. Nanocarbons for Energy Conversion: Supramolecular Approaches; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Andersen, S.M.; Borghei, M.; Lund, P.; Elina, Y.; Pasanen, A.; Kauppinen, E.; Ruiz, V.; Kauranen, P.; Skou, E.M. Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells. Solid State Ion. 2013, 231, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Glebova, N.V.; Nechitailov, A.A.; Velichko, E.N. Characteristics of the composite platinum-carbon electrode containing carbon nanofibers. J. Phys. Conf. Ser. 2019, 1238, 012004. [Google Scholar] [CrossRef]
- Nechitailov, A.A.; Glebova, N.V.; Krasnova, A.O. Structure Formation Model in the Pt/C-CNT-Nafion System. J. Struct. Chem. 2019, 60, 1507–1519. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bates, A.; Lee, S.C.; Lee, D.; Park, S. A Review of the Application of CNTs in PEM Fuel Cells. Int. J. Green Energy 2015, 12, 787–809. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, J.; Choi, H.; Cha, H.; Shin, M.; Jeong, Y.; Park, T. CNT sheet as a cathodic functional interlayer in polymer electrolyte membrane fuel cells. Energy 2022, 245, 123237. [Google Scholar] [CrossRef]
- Glebova, N.V.; Nechitailov, A.A.; Krasnova, A.O. Electrode material containing carbon nanotubes and its kinetic characteristics of oxygen electroreduction. React. Kinet. Mech. Catal. 2020, 131, 599–612. [Google Scholar] [CrossRef]
- Linse, N.; Gubler, L.; Scherer, G.G.; Wokaun, A. The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells. Electrochim. Acta 2011, 56, 7541–7549. [Google Scholar] [CrossRef]
- Shokhen, V.; Strandberg, L.; Skoglundh, M.; Wickman, B. Impact of Accelerated Stress Tests on the Cathodic Catalytic Layer in a Proton Exchange Membrane (PEM) Fuel Cell Studied by Identical Location Scanning Electron Microscopy. ACS Appl. Energy Mater. 2022, 5, 11200–11212. [Google Scholar] [CrossRef]
- Fuel Cell Store. VULCAN XC-72 Carbon Black. Available online: https://www.fuelcellstore.com/spec-sheets/vulcan-xc72-spec-sheet.pdf (accessed on 24 January 2023).
- Glebova, N.V.; Nechitaylov, A.A. Physico-chemical properties of carbon materials intended as a component of a catalytic nanocomposite for low-temperature fuel cells. Perspekt. Mater. 2010, 9, 71–77. [Google Scholar]
- Uchida, M.; Aoyama, Y.; Tanabe, M.; Yanagihara, N.; Eda, N.; Ohta, A. Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol. J. Electrochem. Soc. 1995, 142, 2572–2576. [Google Scholar] [CrossRef]
- McBreen, J.; Olender, H.; Srinivasan, S.; Kordesch, K. Carbon supports for phosphoric acid fuel cell electrocatalysts: Alternative materials and methods of evaluation. J. Appl. Electrochem. 1981, 11, 787–796. [Google Scholar] [CrossRef]
- Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Electrical conductivity of thermal carbon blacks: Influence of surface chemistry. Carbon 2001, 39, 1147–1158. [Google Scholar] [CrossRef]
- Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. 2009, 88, 1–24. [Google Scholar] [CrossRef]
- NanoTechCenter. CNTs “Taunit” and Synthesis Thereof. Available online: http://eng.nanotc.ru/producrions/87-cnm-taunit (accessed on 24 January 2023).
- DuPont Fuel Cells. DuPont™ Nafion® PFSA Membranes NRE-211 and NRE-212. Available online: http://www.hesen.cn/userfiles/bochi/file/212%E3%80%81211%E5%8F%82%E6%95%B0.pdf (accessed on 15 February 2022).
- Krasnova, A.O.; Glebova, N.V.; Nechitailov, A.A. Technology and structural characteristics of electrode material in the Pt/C–Taunite-MD–Nafion system. Russ. J. Appl. Chem. 2016, 89, 916–920. [Google Scholar] [CrossRef]
- Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76. [Google Scholar] [CrossRef]
- QuinTech. PEM Single Cell without MEA. Available online: https://www.quintech.de/en/produkte/test-cells-for-different-applications/pem-single-cell-without-mea/fc-05-02-ref/ (accessed on 24 January 2023).
- DOE Catalysis Working Group Meeting. 2015. Available online: https://www.energy.gov/sites/prod/files/2015/12/f27/fcto_cwg_june2015_zelenay.pdf (accessed on 24 January 2023).
- Nechitailov, A.A.; Glebova, N.V.; Tomasov, A.A.; Krasnova, A.O.; Zelenina, N.K. Study of the Heterogeneity of a Mixed-Conducting Electrochemical Electrode. Tech. Phys. 2019, 64, 839–847. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Chen, R.; Rama, P. Inductive Effect on the Fuel Cell Cathode Impedance Spectrum at High Frequencies. J. Fuel Cell Sci. Technol. 2012, 9, 051002. [Google Scholar] [CrossRef]
- Jiang, R.; Mittelsteadt, C.K.; Gittleman, C.S. Through-Plane Proton Transport Resistance of Membrane and Ohmic Resistance Distribution in Fuel Cells. J. Electrochem. Soc. 2009, 156, B1440–B1446. [Google Scholar] [CrossRef]
- Makharia, R.; Mathias, M.F.; Baker, D.R. Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2005, 152, A970–A977. [Google Scholar] [CrossRef]
- Gerteisen, D. Impact of Inhomogeneous Catalyst Layer Properties on Impedance Spectra of Polymer Electrolyte Membrane Fuel Cells. J. Electrochem. Soc. 2015, 162, F1431–F1438. [Google Scholar] [CrossRef]
- Calvillo, L.; Celorrio, V.; Moliner, R.; Garcia, A.B.; Caméan, I.; Lazaro, M.J. Comparative study of Pt catalysts supported on different high conductive carbon materials for methanol and ethanol oxidation. Electrochim. Acta 2013, 102, 19–27. [Google Scholar] [CrossRef]
- Park, J.; Kim, S. Synthesis and electrochemical analysis of Pt-loaded, polypyrrole decorated, graphene-composite electrodes. Carbon Lett. 2013, 14, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Sanc, I. Polytechna, Foreign Trade Corporation: Panska, Czechoslovakia, ICDD Grant-in-Aid. 1990. Available online: http://www.xrayhandbook.narod.ru/Cards/Card-Cgr.htm (accessed on 28 December 2022).
- Gamarnik, M.Y. Change of Lattice Parameters in Highly Disperse Nickel Powders. Phys. Stat. Sol. 1991, 168, 389–395. [Google Scholar] [CrossRef]
- Vermaak, J.S.; Kuhlmann-Wilsdorf, D. Measurement of the aver-age surface stress of gold as a function of temperature in the temperature range 50-985.deg. J. Phys. Chem. 1968, 72, 4150–4154. [Google Scholar] [CrossRef]
- Banfield, J.F.; Zhang, H. Nanoparticles in the Environment; Banfield, J.F., Navrotsky, A., Eds.; Mineralogical Society of America: Washington, DC, USA, 2001; pp. 1–58. [Google Scholar] [CrossRef]
Samples | Composition | Cathode Pt Loading, mg | Electrode Porosity, % |
---|---|---|---|
Type 1 | Pt/C(40%Pt) + CNTs 30% + coagulated Nafion 40% | 0.12 | 74.7 |
Type 2 | Pt/C(40%Pt) + noncoagulated Nafion 20% | 0.25 | 59.5 |
Membrane Type | Thickness, μm | EW | Chemical Stability | Ω at RH~100%, Ohm*cm | Available Acid Capacity, meq/g |
---|---|---|---|---|---|
MF4-SK | 45 ± 5 | 1000 | chemically stable | 8 | 1.0 |
Nafion 212 | 50.8 | 1100 | chemically stable | 10 (measured by EIS) | 0.92 minimum |
Material | Bulk Density, g/cm3 | Porosity, % | Specific Pore Volume (Including Macropores), cm3/g | Specific Surface Area, m3/g |
---|---|---|---|---|
Vulcan XC-72 (Pt carrier) | 0.26 | 88 | 1.7 | 200–250 |
CNTs Taunit MD | 0.025–0.060 | 99–97 | 40–16 | ≥270 |
Number of Cycles | Sample of Type 1 | Sample of Type 2 |
---|---|---|
initial (100) | 120 ± 4 | 100 ± 3 |
1000 | 120 ± 4 | 80 ± 2 |
3000 | 900 ± 27 | 300 ± 9 |
5000 | 1000 ± 30 | 760 ± 23 |
10,000 | 1000 ± 30 | 1300 ± 39 |
Sample | Average Crystallite Size, nm/ Micro Strain for Pt(hkl), % | Cubic Unit Cell a = b = c, Å | ||||
---|---|---|---|---|---|---|
(111) | (200) | (220) | (311) | (222) | ||
Pt/C w/o and with CNTs initial state | 2.03/ 5.5 | 2.04/ 4.8 | 1.66/ 4.2 | 1.48/ 4.0 | 1.46/ 3.9 | 3.909(3) |
Pt/C with CNTs after 10,000 aging cycles | 2.20/ 5.2 | 2.17/ 4.6 | 1.76/ 4.0 | 1.56/ 4.0 | 1.54/ 3.9 | 3.911(5) |
Pt/C w/o CNTs after 10,000 aging cycles | 2.88/ 3.9 | 3.04/ 3.2 | 2.73/ 2.5 | 2.40/ 2.5 | 2.37/ 2.4 | 3.917(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechitailov, A.A.; Volovitch, P.; Glebova, N.V.; Krasnova, A. Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells. Membranes 2023, 13, 342. https://doi.org/10.3390/membranes13030342
Nechitailov AA, Volovitch P, Glebova NV, Krasnova A. Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells. Membranes. 2023; 13(3):342. https://doi.org/10.3390/membranes13030342
Chicago/Turabian StyleNechitailov, Andrey A., Polina Volovitch, Nadezhda V. Glebova, and Anna Krasnova. 2023. "Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells" Membranes 13, no. 3: 342. https://doi.org/10.3390/membranes13030342
APA StyleNechitailov, A. A., Volovitch, P., Glebova, N. V., & Krasnova, A. (2023). Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells. Membranes, 13(3), 342. https://doi.org/10.3390/membranes13030342