Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review
Abstract
:1. Introduction
2. Synthesis of Silver Nanoparticles
3. Incorporation of Silver Nanoparticles in Membranes
3.1. Chemical Reduction of Silver Salts
3.2. Electro-Spinning
3.3. Physical Vapour Deposition
3.4. Wet-Phase Inversion Process
3.5. Dipping in Colloidal Silver Solution or Brushing with Colloidal Silver Solution
4. Surface Characteristics Determining Membrane Fouling
5. Performance of Membranes Incorporating AgNPs
5.1. Mechanism of Antimicrobial Effect of AgNPs
- (a) Attachment and penetration by AgNPs
- (b) Release of silver ions
- (c) Action of reactive oxygen species
5.2. Disinfection Performance of AgNP-Impregnated Membranes
5.3. Fouling Mitigation and Flux Enhancement in AgNP-Impregnated Membranes
5.4. Long-Term Performance of AgNP-Coated Membranes
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO; UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene, 2000–2017, Special Focus on Inequalities; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.; Razzaq, W. A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. J. Membr. Sci. Technol. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Dmitrieva, E.S.; Anokhina, T.S.; Novitsky, E.G.; Volkov, V.V.; Borisov, I.L.; Volkov, A.V. Polymeric Membranes for Oil-Water Separation: A Review. Polymers 2022, 14, 980. [Google Scholar] [CrossRef]
- Jhaveri, J.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Zou, D.; Lee, Y.M. Design strategy of poly(vinylidene fluoride) membranes for water treatment. Prog. Polym. Sci. 2022, 128, 101535. [Google Scholar] [CrossRef]
- Strathmann, H. Introduction to Membrane Science and Technology; Institute on Membrane Technology: Roma, Italy, 2000. [Google Scholar]
- Madaeni, S.S. The Application of Membrane Technology for Water Disinfection. Wat. Res. 1999, 33, 301–308. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. Water Treatment: Principles and Design, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bardhan, A.; Akhtar, A.; Subbiah, S. Chapter 1—Microfiltration and ultrafiltration membrane technologies. In Advancement in Polymer-Based Membranes for Water Remediation; Nayak, S.K., Dutta, K., Gohil, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–42. Available online: https://www.sciencedirect.com/science/article/pii/B9780323885140000012 (accessed on 12 January 2023).
- Sanchis-Perucho, P.; Aguado, D.; Ferrer, J.; Seco, A.; Robles, Á. Direct Membrane Filtration of Municipal Wastewater: Studying the Most Suitable Conditions for Minimizing Fouling Rate in Commercial Porous Membranes at Demonstration Scale. Membranes 2023, 13, 99. [Google Scholar] [CrossRef]
- Nagandran, S.; Goh, P.S.; Ismail, A.F.; Wong, T.-W.; Binti Wan Dagang, W.R.Z. The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry 2020, 12, 239. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Yong, W.F. Recent progress of zwitterionic materials as antifouling membranes for ultrafiltration, nanofiltration, and reverse osmosis. ACS Appl. Polym. Mater. 2021, 3, 4390–4412. [Google Scholar] [CrossRef]
- Dankovich, T.A.; Gray, D.G. Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment. Environ. Sci. Technol. 2011, 45, 1992–1998. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An overview of silver nano-particles as promising materials for water disinfection. Environ. Technol. Innov. 2021, 23, 101721. [Google Scholar] [CrossRef]
- Ostiguy, C.; Roberge, B.; Woods, C.; Soucy, B. Engineered Nanoparticles: Current Knowledge about OHS Risks and Prevention Measures; Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST): Montreal, QC, Canada, 2010. [Google Scholar]
- El-Badawy, A.; Feldhake, D.; Venkatapathy, R. State of the Science Literature Review: Everything Nanosilver and More; Environmental Protection Agency: Washington, DC, USA, 2010.
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauter, M.S.; Wang, Y.; Okemgbo, K.C.; Osuji, C.O.; Giannelis, E.P.; Elimelech, M. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials. Appl. Mater. Interfaces 2011, 3, 2861–2868. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef] [PubMed]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Resour. 2009, 43, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazani, M.; Aghapour Aktij, S.; Rahimpour, A.; Kiadeh, N. Cu-BTC Metal−Organic Framework Modified Membranes for Landfill Leachate Treatment. Water 2019, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- WHO. Alternative Drinking-Water Disinfectants: Bromine, Iodine and Silver; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Kanwal, Z.; Raza, M.A.; Riaz, S.; Manzoor, S.; Tayyeb, A.; Sajid, I.; Naseem, S. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R. Soc. Open Sci. 2019, 6, 182135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tylkowski, B.; Trojanowska, A.; Nowak, M.; Marciniak, L.; Jastrzab, R. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. Phys. Sci. Rev. 2017, 2, 20170024. [Google Scholar] [CrossRef]
- Bolto, B.; Xie, Z. Recent developments in fouling minimization of membranes modified with silver nanoparticles. J. Membr. Sci. Res. 2018, 4, 111–120. [Google Scholar]
- Royal Academy of Engineering. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. 2004. Available online: https://royalsociety.org/topics-policy/publications/2004/nanoscience-nanotechnologies/ (accessed on 12 January 2023).
- Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V.S.; Pugazhendhi, A. Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Curr. Pharm. Des. 2019, 25, 2650–2660. [Google Scholar] [CrossRef]
- Sondi, I.; Goia, D.V.; Matijević, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 2003, 260, 75–81. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712. [Google Scholar] [PubMed] [Green Version]
- Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 594–598. [Google Scholar] [CrossRef]
- Varshney, R.; Mishra, A.N.; Bhadauria, S.; Gaur, M.S. A novel microbial route to synthesize silver nanoparticles using fungus hormoconis resinae. Dig. J. Nanomater. Biostruct. 2009, 4, 349–355. [Google Scholar]
- Kora, A.J.; Manjusha, R.; Arunachalam, J. Superior bactericidal activity of SDS capped silver nanoparticles: Synthesis and characterization. Mater. Sci. Eng. C 2009, 29, 2104–2109. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, A.; Zhao, Y.; Zhang, J.; Zhu, J. A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg. Chem. Commun. 2004, 7, 506–509. [Google Scholar] [CrossRef]
- Darroudi, M.; Ahmad, M.B.; Zak, A.K.; Zamiri, R.; Hakimi, M. Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles under UV-Light. Int. J. Mol. Sci. 2011, 12, 6346–6356. [Google Scholar] [CrossRef] [Green Version]
- Jorge de Souza, T.A.; Rosa Souza, L.R.; Franchi, L.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 2019, 171, 691–700. [Google Scholar] [CrossRef]
- Tolaymat, T.M.; Badawy AM, E.; Genaidy, A.; Scheckel, K.G.; Luxton, T.P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kora, A.J.; Arunachalam, J. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol. Biotechnol. 2011, 27, 1209–1216. [Google Scholar] [CrossRef]
- Krutyakov, Y.A.; Kudrinskiy, Y.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008, 77, 233–257. [Google Scholar] [CrossRef]
- Filippo, E.; Serra, A.; Buccolieri, A.; Manno, D. Green synthesis of silver nanoparticles with sucrose and maltose: Morphological and structural characterization. J. Non-Cryst. Solids 2010, 356, 344–350. [Google Scholar] [CrossRef]
- Panigrahi, S.; Kundu, S.; Ghosh, S.K.; Nath, S.; Pal, T. General method of synthesis for metal nanoparticles. J. Nanoparticle Res. 2004, 6, 411–414. [Google Scholar] [CrossRef]
- Bai, H.; Yang, B.; Chai, C.; Yang, G.; Jia, W.; Yi, Z. Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World J. Microbiol. Biotechnol. 2011, 27, 2723–2728. [Google Scholar] [CrossRef]
- Awad, M.A.; Mekhamer, W.K.; Merghani, N.M.; Hendi, A.A.; Ortashi KM, O.; Al-Abbas, F.; Eisa, N.E. Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite. J. Nanomater. 2015, 2015, 943821. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bruggen, B.V.D. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhou, Z.; Huang, G.; Cheng, H.; Han, L.; Zhao, S.; Chen, Y.; Meng, F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Res. 2022, 222, 118901. [Google Scholar] [CrossRef] [PubMed]
- Maria LC, S.; Santos AL, C.; Oliveira, P.C.; Valle AS, S.; Barud, H.S.; Messaddeq, Y.; Ribeiro, S.J.L. Preparation and Antibacterial Activity of Silver Nanoparticles Impregnated in Bacterial Cellulose. Polímeros Ciência E Tecnol. 2010, 20, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Hotze, M.; Lowry, G. Nanotechnology for Sustainable Water Treatment. In Sustainable Water; Hester, R.E., Harrison, R.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2011. [Google Scholar]
- Quang, D.V.; Sarawade, P.B.; Jeon, S.J.; Kim, S.H.; Kim, J.-K.; Chai, Y.G.; Kim, H.T. Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 2013, 266, 280–287. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Dallas, P.; Sharma, V.K.; Zboril, R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface Sci. 2011, 166, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008, 72, 43–51. [Google Scholar] [CrossRef]
- Mecha, C.A.; Pillay, V.L. Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J. Membr. Sci. 2014, 458, 149–156. [Google Scholar] [CrossRef]
- Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 2005, 90, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, H.Q.; Sowe, A.; Chen, S.-S.; Duong, C.C.; Ray, S.S.; Nguyen, N.C. Exploring Nanosilver-Coated Hollow Fiber Microfiltration to Mitigate Biofouling for High Loading Membrane Bioreactor. Molecules 2019, 24, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olenin, A.Y.; Krutyakov, Y.A.; Kudrinskii, A.A.; Lisichkin, G.V. Formation of Surface Layers on Silver Nanoparticles in Aqueous and Water–Organic Media. Colloid J. 2008, 70, 71–76. [Google Scholar] [CrossRef]
- Korucu, H. Evaluation of the performance on reduced graphene oxide synthesized using ascorbic acid and sodium borohydride: Experimental designs-based multi-response optimization application. J. Mol. Struct. 2022, 1268, 133715. [Google Scholar] [CrossRef]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. World Acad. Sci. Eng. Technol. 2008, 43, 357–364. [Google Scholar]
- Chen, Z.; Gao, L. A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles. Mater. Res. Bull. 2007, 42, 1657–1661. [Google Scholar] [CrossRef]
- Bonsak, J. Chemical Synthesis of Silver Nanoparticles for Light Trapping Applications in Silicon Solar Cells. Master’s Thesis, University of Oslo, Oslo, Norway, 2010. [Google Scholar]
- Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322. [Google Scholar]
- Rana, A.K.; Gupta, V.K.; Saini, A.K.; Voicu, S.I.; Abdellattifaand, M.H.; Thakur, V.K. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination 2021, 520, 115359. [Google Scholar] [CrossRef]
- Wang, H.; Fu, G.; Li, X. Functional Polymeric Nanofibers from Electrospinning. Recent Pat. Nanotechnol. 2009, 3, 21–31. [Google Scholar] [CrossRef]
- Hong, K.H.; Park, J.L.; Sul, I.H.; Youk, J.H.; Kang, T.J. Preparation of Antimicrobial Poly(vinyl alcohol) Nanofibers Containing Silver Nanoparticles. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2468–2474. [Google Scholar] [CrossRef]
- Barakat, N.A.; Abadir, M.F.; Sheikh, F.A.; Kanjwal, M.A.; Park, S.J.; Kim, H.Y. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem. Eng. J. 2010, 156, 487–495. [Google Scholar] [CrossRef]
- Voigt, W.V. Water Stable, Antimicrobial Active Nanofibres Generated by Electrospinning from Aqueous Spinning Solutions. Ph.D. Thesis, RWTH AaChen University, Aachen, Germany, 2009. [Google Scholar]
- Park, J.-A.; Kim, S.-B. Antimicrobial filtration with electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests. Chemosphere 2017, 167, 469–477. [Google Scholar] [CrossRef]
- Amouamouha, M.; Gholikandi, G. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study. Membranes 2017, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Heidarpour, F.; Ghani WA, W.K.; Ahmadun FR, B.; Sobri, S.; Zargar, M.; Mozafari, M.R. Nano Silver-Coated Polypropylene Water Filter: I. Manufacture By Electron Beam Gun Using A Modified Balzers 760 Machine. Dig. J. Nanomater. Biostruct. 2010, 5, 787–796. [Google Scholar]
- Richards, H.L.; Baker PG, L.; Iwuoha, E. Metal Nanoparticle Modified Polysulfone Membranes for Use in Wastewater Treatment: A Critical Review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Letterman, R.D. (Ed.) Water Quality and Treatment: A Handbook of Community Water Supplies, 5th ed.; McGraw-Hill, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Aani, S.A.; Gomez, V.; Wright, C.J.; Hilal, N. Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chem. Eng. J. 2017, 326, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R.; Mohammad, A.W. Enhancing Morphology and Separation Performance of Polyamide 6,6 Membranes By Minimal Incorporation of Silver Decorated Graphene Oxide Nanoparticles. Sci. Rep. 2019, 9, 1216. [Google Scholar] [CrossRef] [Green Version]
- Bielefeldt, A.R.; Kowalski, K.; Summers, R.S. Bacterial treatment effectiveness of point-of-use ceramic water filters. Water Res. 2009, 43, 3559–3565. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, B.; Jaiprakashnarain, G.B. Design and application of nano silver based POU appliances for disinfection of drinking water. Indian J. Sci. Technol. 2009, 2, 5–8. [Google Scholar] [CrossRef]
- Oyanedel-Craver, V.; Smith, J. Sustainable colloidal-silver impregnated ceramic filter for point-of-use water treatment. Environ. Sci. Technol. 2008, 42, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Lantagne, D.S. Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter Report 1: Intrinsic Effectiveness; Alethia Environmental: Allston, MA, USA, 2001. [Google Scholar]
- Halem, D.V. Ceramic Silver Impregnated Pot Filters for Household Drinking Water Treatment in Developing Countries. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2006. [Google Scholar]
- Rayner, J. Current Practices in Manufacturing of Ceramic Pot Filters for Water Treatment. Master’s Thesis, Loughborough University, Loughborough, UK, 2009. [Google Scholar]
- Jackson, K.N.; Smith, J.A. A New Method for the Deposition of Metallic Silver on Porous Ceramic Water Filters. J. Nanotechnol. 2018, 2018, 2573015. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of polyethersulfone membranes—A review of methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187–207. [Google Scholar] [CrossRef]
- Ahmad, J.; Wen, X.; Li, F.; Wang, B. Novel triangular silver nanoparticle modified membranes for enhanced antifouling performance. RSC Adv. 2019, 9, 6733–6744. [Google Scholar]
- Taurozzi, J.S.; Arul, H.; Bosak, V.Z.; Burban, A.F.; Voice, T.C.; Bruening, M.L.; Tarabara, V.V. Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J. Membr. Sci. 2008, 325, 58–68. [Google Scholar] [CrossRef]
- Xu, W.; Zhuang, H.; Xu, Z.; Huang, M.; Gao, S.; Li, Q.; Zhang, G. Design and Construction of Ag@MOFs Immobilized PVDF Ultrafiltration Membranes with Anti-bacterial and Antifouling Properties. Adv. Polym. Technol. 2020, 2020, 5456707. [Google Scholar] [CrossRef]
- Pereira, B.D.S.; Moreti, L.O.R.; Silva, M.F.; Bergamasco, R.; Piccioli, A.D.F.B.; Garcia, E.E.; Costa, W.V.D.; Pineda, E.A.G.; Oliveira, D.M.F.D.; Hechenleitner, A.A.W. Water Permeability Increase in Ultrafiltration Cellulose Acetate Membrane Containing Silver Nanoparticles. Mater. Res. 2017, 20, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Kotlhao, K.; Lawal, I.A.; Moutloali, R.M.; Klink, M.J. Antifouling Properties of Silver-Zinc Oxide Polyamide Thin Film Composite Membrane and Rejection of 2-Chlorophenol and 2,4-Dichlorophenol. Membranes 2019, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Clement, J.L.; Jarrett, P.S. Antibacterial silver. J. Met. Based Drugs 1994, 1, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Kheybari, S.; Samadi, N.; Hosseini, S.V.; Fazeli, A.; Fazeli, M.R. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. Daru 2010, 18, 168–172. [Google Scholar] [PubMed]
- Li, W.; Xie, X.; Shi, Q.; Duan, S.; Ouyang, Y.; Chen, Y. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011, 24, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liu, H.; Wang, Z.; Liu, S.; Hao, L.; Sang, Y.; Liu, D.; Wang, J.; Boughton, R.I. Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Membr. Sci. 2009, 331, 50–56. [Google Scholar] [CrossRef]
- Heidarpour, F.; Wan, W.A.; Ghani, K.; Ahmadun FR, B.; Sobri, S.; Zargar, M.; Mozafari, M.R. Nano silver-coated polypropylene water filter: II Evaluation of antimicrobial efficiency. Dig. J. Nanomater. Biostruct. 2010, 5, 797–804. [Google Scholar]
- Parameswari, E.; Udayasoorian, C.; Sebastian, S.P.; Jayabalakrishnan, R. The bactericidal potential of silver nanoparticles. Int. Res. J. Biotechnol. 2010, 1, 44–49. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Martínez-Castañon, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Raffi, M.; Hussain, F.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Hasan, M.M. Antibacterial Characterization of Silver Nanoparticles against E: Coli ATCC-15224. J. Mater. Sci. Technol. 2008, 24, 192–196. [Google Scholar]
- Jin, X.; Li, M.; Wang, J.; Marambio-Jones, C.; Peng, F.; Huang, X.; Damoiseaux, R.; Hoek, E.M. High-Throughput Screening of Silver Nanoparticle Stability and Bacterial Inactivation in Aquatic Media: Influence of Specific Ions. Environ. Sci. Technol. 2010, 44, 7321–7328. [Google Scholar] [CrossRef] [PubMed]
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1566. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. [Google Scholar] [CrossRef]
- Mirzajani, F.; Ghassempour, A.; Aliahmadi, A.; Esmaeili, M.A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 2011, 162, 542–549. [Google Scholar] [CrossRef]
- Lalueza, P.; Monzón, M.; Arruebo, M.; Santamaría, J. Bactericidal effects of different silver-containing materials. Mater. Res. Bull. 2011, 46, 2070–2076. [Google Scholar] [CrossRef]
- Ju-Nam, Y.; Lead, J.R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 2008, 400, 396–414. [Google Scholar] [CrossRef]
- Petrus, E.M.; Tinakumari, S.; Chai, L.C.; Ubong, A.A.; Tunung, R.; Elexson, N.; Chai, L.F.; Son, R. A study on the minimum inhibitory concentration and minimum bactericidal concentration of Nano Colloidal Silver on food-borne pathogens. Int. Food Res. J. 2011, 18, 55–66. [Google Scholar]
- Sambhy, V.; Sen, A. Novel process of incorporating silver biocides into polymers. Chem. Today 2008, 26, 16–18. [Google Scholar]
- Sintubin, L.; Gusseme, B.D.; Meeren, P.V.; Pycke BF, G.; Verstraete, W.; Boon, N. The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol. 2011, 91, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Sotiriouand, G.; Pratsinis, S. Antibacterial Activity of Nanosilver Ions and Particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef]
- Russell, A.D.; Hugo, W.B. Antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 351–370. [Google Scholar] [PubMed]
- Arakawa, H.; Neault, J.F.; Tajmir-Riahi, H.A. Silver(I) Complexes with DNA and RNA Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis. Biophys. J. 2001, 81, 1580–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lok, C.; Ho, C.; Chen, R.; He, Q.; Yu, W.; Sun, H.; Tam, P.K.; Chiu, J.; Che, C. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl. Environ. Microbiol. 2005, 71, 7589–7593. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Inoue, Y.; Hoshino, M.; Takahashi, H.; Noguchi, T.; Murata, T.; Kanzaki, Y.; Hamashima, H.; Sasatsu, M. Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions. J. Inorg. Biochem. 2002, 92, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; He, H.; Ma, Z. Efficient disinfection of Escherichia coli in water by silver loaded alumina. J. Inorg. Biochem. 2008, 102, 1736–1742. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Ehdaie, B.; Rento, C.T.; Son, V.; Turner, S.S.; Samie, A.; Dillingham, R.A.; Smith, J.A. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa. PLoS ONE 2017, 12, e0169502. [Google Scholar] [CrossRef] [Green Version]
- Praveena, S.M.; Han, L.S.; Than, L.T.L.; Aris, A.Z. Preparation and characterisation of silver nanoparticle coated on cellulose paper: Evaluation of their potential as antibacterial water filter. J. Exp. Nanosci. 2016, 11, 1307–1319. [Google Scholar] [CrossRef] [Green Version]
- Bloem, S.C.; Van Halem, D.; Sampson, M.L.; Huoy, L.-S.; Heijman, B. Silver Impregnated Ceramic Pot Filter: Flow Rate versus the Removal Efficiency of Pathogens. In International Ceramic Pot Filter Workshop, WEF Disinfection 2009; WEF: Atlanta, GA, USA, 2009. [Google Scholar]
- Chollom, M.N.; Rathilal, S. Fouling and Cleaning in Osmotically Driven Membranes. In Osmotically Driven Membrane Processes-Approach, Development and Current Status; Intech: Rijeka, Croatia, 2018. [Google Scholar]
- Yang, H.-L.; Lin, J.C.-T.; Huang, C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. 2009, 43, 3777–3786. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Chen, X.; Drioli, E.; Ke, X.; Qiu, M.; Fan, Y. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. J. Membr. Sci. 2020, 593, 117402. [Google Scholar] [CrossRef]
- Park, S.-G.; Rajesh, P.P.; Hwang, M.-H.; Chu, K.H.; Cho, S.; Chae, K.-J. Long-term effects of anti-biofouling proton exchange membrane using silver nanoparticles and polydopamine on the performance of microbial electrolysis cells. Int. J. Hydrogen Energy 2020, 46, 11345–11356. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, K.; Gusseme, B.D.; Verstraete, W. Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 2012, 46, 2077–2087. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, L.; Wee, K.-H.; Zhao, Y.-H.; Bai, R. Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling J. Bioadhesion Biofilm Res. 2011, 27, 773–786. [Google Scholar] [CrossRef]
- Dror-Ehre, A.; Adin, A.; Mamane, H. Control of membrane biofouling by silver nanoparticles using Pseudomonas aeruginosa as a model bacterium. Desalination Water Treat. 2012, 48, 130–137. [Google Scholar] [CrossRef]
- Diagne, F.; Malaisamy, R.; Boddie, V.; Holbrook, R.D.; Eribo, B.; Jones, K.L. Polyelectrolyte and Silver Nanoparticle Modification of Microfiltration Membranes To Mitigate Organic and Bacterial Fouling. Environ. Sci. Technol. 2012, 46, 4025–4033. [Google Scholar] [CrossRef] [PubMed]
- Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Sari, Ö. Characterization and antimicrobial performance of nano silver coatings on leather materials. Braz. J. Microbiol. 2015, 46, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Bai, R.; Kin-Ho, W.; Liu, C.; Shu-Ling, T. Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J. Membr. Sci. 2010, 363, 278–286. [Google Scholar] [CrossRef]
- Liu, Y.; Rosenfield, E.; Hu, M.; Mi, B. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles. Water Res. 2013, 47, 2949–2958. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric nanocomposite membranes for water treatment: A review. Environ. Chem. Lett. 2019, 17, 1539–1551. [Google Scholar] [CrossRef]
- Mecha, A.C.; Otieno, F.A.O.; Pillay, V.L. Long-term disinfection performance of silver nanoparticles impregnated membranes. Desalination Water Treat. 2016, 57, 4906–4912. [Google Scholar] [CrossRef]
- Kumar, R.; Munstedt, H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005, 26, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
Reducing Agent | Temperature (°C) | Rate |
---|---|---|
Organics, alcohols, polyols | ≥70 | Slow |
Aldehydes, sugars | <50 | Moderate |
Citrate | >70 | Moderate |
Hydrazine, H2SO3, H3PO2 | Ambient | Fast |
NaBH4, boranes, hydrated e− | Ambient | Very fast |
Property | Improvement | Reference |
---|---|---|
Hydrophilicity | Increased hydrophilicity by 36% | [85] |
Increased hydrophilicity by 46% | [75] | |
Increased hydrophilicity by 77% | [55] | |
Water permeability increased from 214 L/m2h to 1651 L/m2h Contact angle reduced from 80 ± 2° to zero | [88] | |
The pure water flux increased from 85 L/m2h to 157 L/m2h | [87] | |
The contact angle decreased from 62.8° to 54° for unmodified and Ag-ZnO modified membranes, respectively | [89] | |
Surface morphology | Nanoparticles uniformly distributed on the surface of the membranes and no significant difference in roughness | [55,87] |
Surface charge | Membrane charge density increased 15.6-fold due to the sharp-tip morphology of the triangular silver nanoparticles forming “hot spots” on the membrane surface | [85] |
Membrane Material | Target Microbes | Disinfection Efficiency | Reference |
---|---|---|---|
Ag ceramic tablet | E. coli | 100% | [117] |
Cellulose filter paper | E. coli | 100% | [118] |
Blotting paper | E. coli and Enterococcus faecalis | 3–6 log removal | [14] |
Cellulose membranes | E. coli | 100% inactivation | [49] |
Woven fabric membranes | E. coli | 3 log removal | [55] |
Bacterial cellulose | Escherichia coli and S. aureus | 99.7% and 99.9% reduction in E. coli and S. aureus, respectively | [54] |
Polyurethane foams | E. coli (105 CFU/mL) | 100% inactivation | [56] |
Ceramic filters | E. coli | 97.8–100% inactivation | [78] |
Polysulfone UF membranes | Bacteriophage (5 ± 0.2 × 105 PFU/mL) | 5 log removal | [21] |
Ceramic filter | E. coli | 100% inactivation | [93] |
Ceramic filters | E. coli | 5.9 LRV with AgNPs; 3.05 LRV without AgNPs | [119] |
Membrane Material | Type of Fouling | Performance | Reference |
---|---|---|---|
Pristine membrane, SPAES/PIN-PEM | Biofouling using Bradford protein assay | 80.74% biofouling reduction | [123] |
Hollow-fibre MF | Biofouling under mixed liquor suspended solid (MLSS) | Cake layer resistance of the unmodified membrane 2.7 times that of the AgNPs MF in 60 days | [57] |
Ceramic membranes | Bovine serum albumin | FRR increased from 35% (uncoated) to 80% (coated) | [122] |
Poly ether sulfone (PES) MF membrane | Bacteria (107 CFU/mL) | Flux increase (31%); FRR of 98.2% against bio fouling | [85] |
Ag@MOF-PVDF membrane | Biofouling using S. aureus | 95.7% FRR of coated membranes | [87] |
Polyamide with Ag and grapheme oxide | Biofouling using E. coli | Flux increase (135%); 76–37% irreversible fouling reduction | [75] |
Polyamide thin-film composite | 2,4-dichlorophenol organic fouling | Flux recovery increased from 64% to 95% | [89] |
Poly sulfone UF | Biofouling using P. mendocina | 94% reduction attachment of E. coli and P. mendocina | [21] |
Poly ether sulfone (PES) | Biofouling using E. coli and P. aeruginosa | No bacterial attachment for 9 weeks | [124] |
Chitosan membrane | Biofouling using E. coli and Pseudomonas sp. | Reduced attachment for 10 days | [129] |
Polypropylene membranes | Biofouling using E. coli and S. aureus | No bacterial attachment for 12 days; flux recovered in coated membranes by physical cleaning | [125] |
Amicon bench-scale dead-end UF cells | Biofouling using P. aeruginosa | Decreased flux decline in coated membranes | [126] |
Poly ether sulfone (PES) | Biofouling using E. coli | Flux decline was 3.7% for the coated membranes and 12.2% for the unmodified membrane | [127] |
Polysulfone membranes | Biofouling using E. coli | Bacterial detachment ratio of 75% for coated membrane; 18% for the unmodified membrane | [130] |
Ceramic filters | Biofouling using E. coli | Increased permeate flux | [119] |
Leather | Biofouling using E. coli and S. aureus | Reduced E. coli attachment by 99.25% and S. aureus by 99.91% | [128] |
Membrane Material | Period | Performance | Reference |
---|---|---|---|
Pristine membrane, SPAES/PIN-PEM | 180 days | No biofouling | [123] |
Poly ether sulfone | 120 days | 93% biocidal activity after four months of use and 14% silver loss in 14 days | [85] |
Woven fabric membranes | 90 days | Minimal silver elution 0.002–0.018 mg/L | [132] |
Ceramic membrane (Ag-ceramic tablet) | 365 days | 100% E. coli reduction; Ag leaching < 20 μg/L | [117] |
Poly ether sulfone (PES) | 63 days | No biofouling | [124] |
Hollow fibre MF | 60 days | Flux of the AgNPs MF decreased 59.7%, and in the unmodified membrane dropped 81.8% | [57] |
Polyamide | 28 days | 2 log reduction of E. coli and 3 log reduction of S. aureus | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecha, A.C.; Chollom, M.N.; Babatunde, B.F.; Tetteh, E.K.; Rathilal, S. Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review. Membranes 2023, 13, 432. https://doi.org/10.3390/membranes13040432
Mecha AC, Chollom MN, Babatunde BF, Tetteh EK, Rathilal S. Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review. Membranes. 2023; 13(4):432. https://doi.org/10.3390/membranes13040432
Chicago/Turabian StyleMecha, Achisa C., Martha N. Chollom, Bakare F. Babatunde, Emmanuel K. Tetteh, and Sudesh Rathilal. 2023. "Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review" Membranes 13, no. 4: 432. https://doi.org/10.3390/membranes13040432
APA StyleMecha, A. C., Chollom, M. N., Babatunde, B. F., Tetteh, E. K., & Rathilal, S. (2023). Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review. Membranes, 13(4), 432. https://doi.org/10.3390/membranes13040432