Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Ultrafiltration of EfOM Samples
2.3. Analytic Method
2.4. Membrane Fouling Analysis
3. Results and Discussion
3.1. Fouling Behavior during Ultrafiltration
3.2. Changes in the Properties of EfOM
3.3. Pollutant Removal Performance
3.4. Fouling Mechanism Analysis
3.5. Analysis of Foulant Layer Morphology
4. Conclusions
- The apparent molecular weight distribution of EfOMs shows that pre-ozonation is effective in removing high MW organic matters with 0~1.5 mg O3/mg DOC dosage, and the removal of low MW organic matters is limited.
- The fluorescence intensity of aromatic protein-like and fulvic-like in the EfOM is significantly weakened with the increase of ozone dosage. This further demonstrates the ability of ozone to destroy unsaturated structures (aromatic structures). The intensity of the humic-like component (C1) and microbial metabolites and aromatic protein component (C3) decreases significantly with the increase of ozone dosage, while the tryptophan-like protein component (C2) decreases to a lesser extent.
- The removal rate of organic matter during the subsequent ultrafiltration is influenced by the pre-ozonation, which gradually decreases with the increase of ozone dosage. It indicates that pre-ozonation may have a negative impact on the effluent quality of ultrafiltration.
- With a relatively low dosage (0.5 mg O3/mg DOC), the fouling layer is denser but lower in thickness, which has no obvious effect on the membrane fouling resistance. When the ozone dosage increases to 1.0 or 1.5 mg O3/mg DOC, the structure of the fouling layer is looser, and the normalized final fouling resistance is 2.05 or 2.08, respectively. There is obviously alleviation in the ultrafiltration fouling.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
- Loosdrecht, M.C.M.v.; Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef]
- Pérez, G.; Gómez, P.; Ortiz, I.; Urtiaga, A. Techno-economic assessment of a membrane-based wastewater reclamation process. Desalination 2022, 522, 115409. [Google Scholar] [CrossRef]
- Zheng, X.; Khan, M.T.; Croue, J.P. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Res. 2014, 65, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: A detailed effluent organic matter (EfOM) characterization. Water Res. 2004, 38, 1933–1939. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Snyder, S.A. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Zheng, X.; Croue, J.P. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater. J. Water Reuse Desalination 2012, 2, 204–209. [Google Scholar] [CrossRef]
- Kim, H.-C.; Dempsey, B.A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. J. Membr. Sci. 2013, 428, 190–197. [Google Scholar] [CrossRef]
- Fan, L.; Harris, J.L.; Roddick, F.A.; Booker, N.A. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res. 2001, 35, 4455–4463. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Shikato, K.; Oki, Y.; Kume, K.; Huber, S.A. Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes. J. Membr. Sci. 2018, 554, 83–89. [Google Scholar] [CrossRef]
- Li, C.-W.; Chen, Y.-S. Fouling of UF membrane by humic substance: Effects of molecular weight and powder-activated carbon (PAC) pre-treatment. Desalination 2004, 170, 59–67. [Google Scholar] [CrossRef]
- Yu, C.-H.; Wu, C.-H.; Lin, C.-H.; Hsiao, C.-H.; Lin, C.-F. Hydrophobicity and molecular weight of humic substances on ultrafiltration fouling and resistance. Sep. Purif. Technol. 2008, 64, 206–212. [Google Scholar] [CrossRef]
- Gao, K.; Li, T.; Liu, J.; Dong, B.; Chu, H. Ultrafiltration membrane fouling performance by mixtures with micromolecular and macromolecular organics. Environ. Sci. Water Res. Technol. 2019, 5, 277–286. [Google Scholar] [CrossRef]
- Wei, C.; Amy, G.L. Membrane Fouling Potential of Secondary Effluent Organic Matter (EfOM) from Conventional Activated Sludge Process. J. Membr. Sep. Technol. 2012, 1, 129–136. [Google Scholar] [CrossRef]
- Wang, H.; Park, M.; Liang, H.; Wu, S.; Lopez, I.J.; Ji, W.; Li, G.; Snyder, S.A. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation. Water Res. 2017, 125, 42–51. [Google Scholar] [CrossRef]
- Jiang, T.; Tian, T.; Guan, Y.-F.; Yu, H.-Q. Contrasting behaviors of pre-ozonation on ceramic membrane biofouling: Early stage vs late stage. Water Res. 2022, 220, 118702. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wen, X.; Huang, X. Membrane organic fouling and the effect of pre-ozonation in microfiltration of secondary effluent organic matter. J. Membr. Sci. 2010, 352, 213–221. [Google Scholar] [CrossRef]
- Karnik, B.S.; Davies, S.H.; Baumann, M.J.; Masten, S.J. The effects of combined ozonation and filtration on disinfection by-product formation. Water Res. 2005, 39, 2839–2850. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.; Taurozzi, J.S.; Alpatova, A.L.; Wang, F.; Tarabara, V.V. Performance of polymeric membranes treating ozonated surface water: Effect of ozone dosage. Sep. Purif. Technol. 2011, 81, 270–278. [Google Scholar] [CrossRef]
- Kim, J.; Shan, W.; Davies, S.H.R.; Baumann, M.J.; Masten, S.J.; Tarabara, V.V. Interactions of Aqueous NOM with Nanoscale TiO2: Implications for Ceramic Membrane Filtration-Ozonation Hybrid Process. Environ. Sci. Technol. 2009, 43, 5488–5494. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, Z.; Tang, S.; Tan, Y.; Zhang, X. Does pre-ozonation or in-situ ozonation really mitigate the protein-based ceramic membrane fouling in the integrated process of ozonation coupled with ceramic membrane filtration? J. Membr. Sci. 2018, 548, 254–262. [Google Scholar] [CrossRef]
- Kuo, G.; Yuan, S. Ultrafiltration fouling behavior of natural organic matter: A perspective of EEM and molecular weight distribution. Water Supply 2021, 21, 4514–4524. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef]
- Olson, T.M.; Barbier, P.F. Oxidation kinetics of natural organic matter by sonolysis and ozone. Water Res. 1994, 28, 1383–1391. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Z.; Liu, J.; Zhang, X. Double-win effects of in-situ ozonation on improved filterability of mixed liquor and ceramic UF membrane fouling mitigation in wastewater treatment? J. Membr. Sci. 2017, 533, 112–120. [Google Scholar] [CrossRef]
- Jarusutthirak, C.; Amy, G. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Res. 2007, 41, 2787–2793. [Google Scholar] [CrossRef]
- Jin, P.; Jin, X.; Bjerkelund, V.A.; Østerhus, S.W.; Wang, X.C.; Yang, L. A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation. Water Res. 2016, 88, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Von Sonntag, C.; Von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment; IWA Publishing: London, UK, 2012. [Google Scholar]
- Yu, H.; Qu, F.; Sun, L.; Liang, H.; Han, Z.; Chang, H.; Shao, S.; Li, G. Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis. Chemosphere 2015, 121, 101–109. [Google Scholar] [CrossRef]
- Gao, K.; Li, T.; Zhao, Q.; Liu, W.; Liu, J.; Song, Y.; Chu, H.; Dong, B. UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Sep. Purif. Technol. 2021, 261, 118297. [Google Scholar] [CrossRef]
- Cerón-Vivas, A.; Kalboussi, N.; Morgan-Sagastume, J.M.; Harmand, J.; Noyola, A. Model assessment of the prevailing fouling mechanisms in a submerged membrane anaerobic reactor treating low-strength wastewater. Bioresour. Technol. 2018, 268, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.K.L.; Boyer, T.H. Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Yamashita, Y.; Scinto, L.J.; Maie, N.; Jaffé, R. Dissolved Organic Matter Characteristics Across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems 2010, 13, 1006–1019. [Google Scholar] [CrossRef]
- Seredyńska-Sobecka, B.; Stedmon, C.A.; Boe-Hansen, R.; Waul, C.K.; Arvin, E. Monitoring organic loading to swimming pools by fluorescence excitation–emission matrix with parallel factor analysis (PARAFAC). Water Res. 2011, 45, 2306–2314. [Google Scholar] [CrossRef]
Procedure | Flow (mL/min) | Duration (min) |
---|---|---|
Discharge | 8.0 | 1 |
Filtration 1 | 4.0 | 40 |
Forward wash 2 | 8.0 | 1 |
Backwash 2 | 8.0 | 2 |
Dosage of Ozone during Pre-Ozonation | Fouling Model | Filtration Cycle | Ki | Kc × J0 | R2 | |
0 mg O3/mg DOC | Cake-intermediate | 1 | 94.77 | 2386.27 | 0.04 | 0.9954 |
2 | −71.85 | 3458.13 | 0.02 | 0.9813 | ||
3 | −144.03 | 3963.60 | 0.04 | 0.9842 | ||
4 | −241.49 | 4012.56 | 0.06 | 0.9780 | ||
5 | −191.30 | 4305.41 | 0.04 | 0.9710 | ||
0.5 mg O3/mg DOC | Cake-intermediate | 1 | −354.25 | 3671.82 | 0.10 | 0.9628 |
2 | −33.80 | 2231.41 | 0.02 | 0.9511 | ||
3 | −272.83 | 3460.10 | 0.08 | 0.9871 | ||
4 | −265.15 | 3498.78 | 0.08 | 0.9885 | ||
5 | −242.30 | 2993.28 | 0.08 | 0.9800 | ||
1.0 mg O3/mg DOC | Cake-intermediate | 1 | −316.63 | 2361.97 | 0.13 | 0.9818 |
2 | −617.37 | 4235.04 | 0.15 | 0.900 | ||
3 | −871.31 | 1711.72 | 0.51 | 0.8822 | ||
4 | −755.22 | 5548.64 | 0.14 | 0.8750 | ||
5 | −910.48 | 7602.57 | 0.12 | 0.8265 | ||
Dosage of Ozone during Pre-Ozonation | Fouling Model | Filtration Cycle | Ki | Ks | R2 | |
1.5 mg O3/mg DOC | Standard-intermediate | 1 | −686.68 | −1007.49 | 0.68 | 0.8670 |
2 | −589.60 | −789.26 | 0.75 | 0.8084 | ||
3 | −598.29 | −713.24 | 0.84 | 0.7736 | ||
4 | −605.52 | −783.35 | 0.77 | 0.8013 | ||
5 | −555.22 | −687.64 | 0.81 | 0.7581 |
Dosage of Ozone during Pre-Ozonation | Mean Roughness Sa (nm) | Average Thickness of Foulant Layer h (nm) |
---|---|---|
pristine membrane | 8.3 | 53.2 |
0 mg O3/mg DOC | 87.6 | 500.0 |
0.5 mg O3/mg DOC | 75.6 | 344.7 |
1.0 mg O3/mg DOC | 93.2 | 561.0 |
1.5 mg O3/mg DOC | 90.5 | 337.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Yang, H.; Liu, H.; Dong, B. Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution. Membranes 2023, 13, 452. https://doi.org/10.3390/membranes13040452
Gao K, Yang H, Liu H, Dong B. Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution. Membranes. 2023; 13(4):452. https://doi.org/10.3390/membranes13040452
Chicago/Turabian StyleGao, Kuo, Hong Yang, Haichen Liu, and Bingzhi Dong. 2023. "Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution" Membranes 13, no. 4: 452. https://doi.org/10.3390/membranes13040452
APA StyleGao, K., Yang, H., Liu, H., & Dong, B. (2023). Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution. Membranes, 13(4), 452. https://doi.org/10.3390/membranes13040452