UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Water and Reagents Preparation
2.2. Experimental Setup and Protocol
2.3. Membrane Fouling Evaluation
2.4. Analytical Methods
3. Results and Discussion
3.1. Characteristics of Feed Water
3.2. Organic Matters Removal with Different Pretreatments
3.2.1. UV254 and DOC in Varying Pretreatment Systems
3.2.2. The Removal of Fluorescent Organics with Different Pretreatments
3.3. Membrane Fouling with Different Pretreatments
3.3.1. Flux and Fouling Resistance
3.3.2. Fouling Mechanism Analysis
3.3.3. Surface Morphology of the Pristine and Fouled Membranes
3.4. Role of Free Radicals and Mechanisms Decipher
3.4.1. Role of Free Radicals on the Organics Removal and Fouling Alleviation
3.4.2. Mechanisms
4. Conclusions
- 1.
- The UV/Fe(II)/S(IV)-UF showed the highest removal of organic matter, in comparison with other pretreatments, i.e., stand-alone S(IV), Fe(II)/S(IV), and UV/S(IV).
- 2.
- The UV/Fe(II)/S(IV) effectively alleviated flux decline and reduced fouling resistance. At optimal conditions, final normalized fluxes in UF of ALW and EOM increased by 12.0% and 29.0%, and reversible fouling resistance decreased by 35.3% and 72.5%, respectively.
- 3.
- The transition of the fouling mechanism from pore blocking to cake filtration was found in the UF of EOM and ALW. The UV/Fe(II)/S(IV) pretreatment delayed the transition point of the fouling mechanisms and even eliminated the cake filtration at a high S(IV) concentration.
- 4.
- In the UV/Fe(II)/S(IV) system, UV-activated S(IV) generated oxysulfur radicals, which interacted with the reductive Fe(II) and enabled redox self-cycling. The oxysulfur radicals and in situ Fe(III) exerted a synergy effect of oxidation and coagulation, which allowed efficient organic removal and alleviated membrane fouling.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Qu, F.; Chen, W.; Liang, H.; Wang, T.; Cheng, X.; Yu, H.; Li, G.; Van der Bruggen, B. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy. Water Res. 2017, 125, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lan, H.; Liu, R.; Liu, H.; Qu, J. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter. Water Res. 2018, 137, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Qu, F.; Liang, H.; Van der Bruggen, B.; Cheng, X.; Yu, H.; Xu, G.; Li, G. Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection. Water Res. 2017, 112, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Liang, H.; Zhou, J.; Nan, J.; Shao, S.; Zhang, J.; Li, G. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 2014, 449, 58–66. [Google Scholar] [CrossRef]
- Qu, F.; Liang, H.; Wang, Z.; Wang, H.; Yu, H.; Li, G. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Res. 2012, 46, 1490–1500. [Google Scholar] [CrossRef]
- Yun, L.; Gao, Z.; Cheng, X.; Li, P.; Wang, L.; Guo, N.; Luo, C.; Zhu, X.; Liu, B.; Wu, D.; et al. Effect of peroxydisulfate oxidation catalyzed with ordered mesoporous carbons on controlling ultrafiltration membrane fouling by algal organic matter. Chemosphere 2022, 303, 135037. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, H.; Wei, G.; Ye, L.; Fan, G.; Fang, Q.; Rong, H.; Qu, F. Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. Algal Res. 2022, 63, 102652. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, L.; Roddick, F.A. Effect of feedwater pre-treatment using UV/H2O2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter. J. Membr. Sci. 2015, 493, 683–689. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, P.; Wang, Z.; Ding, J.; Wang, J.; Wang, S.; Wiesner, M.R. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling. Water Res. 2019, 158, 213–226. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, B. Mechanism study on the effect of peracetic acid (PAA), UV/PAA and ultrasonic/PAA oxidation on ultrafiltration performance during algae-laden water treatment. Water Res. 2022, 220, 118705. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Qu, F.; Yu, H.; Tian, J.; Chen, W.; Liang, H.; Li, G.; Van der Bruggen, B. Membrane Fouling and Rejection of Organics during Algae-Laden Water Treatment Using Ultrafiltration: A Comparison between in Situ Pretreatment with Fe(II)/Persulfate and Ozone. Environ. Sci. Technol. 2018, 52, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wu, D.; Liang, H.; Zhu, X.; Tang, X.; Gan, Z.; Xing, J.; Luo, X.; Li, G. Effect of sulfate radical-based oxidation pretreatments for mitigating ceramic UF membrane fouling caused by algal extracellular organic matter. Water Res. 2018, 145, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, K.; Qu, F.; Liu, B. A moderate activated sulfite pre-oxidation on ultrafiltration treatment of algae-laden water: Fouling mitigation, organic rejection, cell integrity and cake layer property. Sep. Purif. Technol. 2022, 282, 120102. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, L.; Tan, F.; Xu, J.; Mu, R.; Wu, D.; Liang, H.; Cheng, X. Enhancing ultrafiltration of algal-rich water using ferrate activated with sodium percarbonate: Foulants variation, membrane fouling alleviation, and collaborative mechanism. Chemosphere 2022, 308, 136377. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Ding, A.; Tang, X.; Liu, B.; Zhu, X.; Gan, Z.; Wu, D.; Li, G. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine. Water Res. 2017, 113, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, M.; Wang, D.; Yan, M.; Liu, Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Sci. Total Environ. 2021, 772, 145522. [Google Scholar] [CrossRef] [PubMed]
- Deister, U.; Warneck, P. Photooxidation of sulfite (SO32−) in aqueous solution. J. Phys. Chem. 1990, 94, 2191–2198. [Google Scholar] [CrossRef]
- Fischer, M.; Warneck, P. Photodecomposition and Photooxidation of Hydrogen Sulfite in Aqueous Solution. J. Phys. Chem. 1996, 100, 15111–15117. [Google Scholar] [CrossRef]
- Liu, W.; Liu, B.; Li, X. UV/Fe(II) synergistically activated S(IV) per-treatment on HA-enhanced Ca2+ scaling in NF filtration: Fouling mitigation, mechanisms and correlation analysis of membrane resistance in different filtration stage. Chemosphere 2022, 308, 136302. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, C.; Zhou, S.; Liu, B.; Cheng, X.; Xue, Z.; Zhu, T. Effects of UV/Fe(II)/sulfite pre-treatment on NOM-enhanced Ca2+ scaling during nanofiltration treatment: Fouling mitigation, mechanisms, and correlation analysis of membrane resistance. Water Res. 2022, 223, 119025. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Kloucek, O.; Pivokonska, L. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Res. 2006, 40, 3045–3052. [Google Scholar] [CrossRef]
- Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Li, L.; Deng, J.; Tan, C. Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential. Water Res. 2014, 52, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, L.; Roddick, F.A. Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. J. Membr. Sci. 2013, 425–426, 23–29. [Google Scholar] [CrossRef]
- Rahn, R.O.; Stefan, M.I.; Bolton, J.R.; Goren, E.; Shaw, P.-S.; Lykke, K.R. Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration. Photochem. Photobiol. 2003, 78, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Linden Karl, G.; Darby Jeannie, L. Estimating Effective Germicidal Dose from Medium Pressure UV Lamps. J. Environ. Eng. 1997, 123, 1142–1149. [Google Scholar] [CrossRef]
- Xing, J.; Du, L.; Quan, X.; Luo, X.; Snyder, S.A.; Liang, H. Combining chlor(am)ine-UV oxidation to ultrafiltration for potable water reuse: Promoted efficiency, membrane fouling control and mechanism. J. Membr. Sci. 2021, 635, 119511. [Google Scholar] [CrossRef]
- Cheng, X.; Li, P.; Zhu, X.; Luo, C.; Zheng, L.; Hou, C.; Wu, D.; Liang, H. Role of different dimensional carbon nanoparticles in catalytic oxidation of organic pollutants and alleviating membrane fouling during ultrafiltration of surface water. Sep. Purif. Technol. 2021, 270, 118804. [Google Scholar] [CrossRef]
- Qu, F.; Yang, Z.; Li, X.; Yu, H.; Pan, Z.; Fan, G.; He, J.; Rong, H. Membrane fouling control by UV/persulfate in tertiary wastewater treatment with ultrafiltration: A comparison with UV/hydroperoxide and role of free radicals. Sep. Purif. Technol. 2021, 257, 117877. [Google Scholar] [CrossRef]
- Choo, K.-H.; Lee, C.-H. Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. 1996, 30, 1771–1780. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, C.; Gao, H.; Li, P.; Zhu, X.; Luo, C.; Zhang, L.; Jin, Y.; Wu, D.; Liang, H. Synergistic process using calcium peroxide and ferrous iron for enhanced ultrafiltration of Microcystis aeruginosa-laden water. Water Res. 2022, 211, 118067. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Kocic, A.; Zydney, A.L. Analysis of humic acid fouling during microfiltration using a pore blockage–cake filtration model. J. Membr. Sci. 2002, 198, 51–62. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Z.; Zhang, X.; Qu, F.; Wang, P.; Liang, H. Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis. Water Res. 2019, 148, 546–555. [Google Scholar] [CrossRef]
- Yu, H.; Qu, F.; Wu, Z.; He, J.; Rong, H.; Liang, H. Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation. Water Res. 2020, 187, 116452. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.K.; Hai, F.I.; Roddick, F.A. Ultraviolet/persulfate pre-treatment for organic fouling mitigation of forward osmosis membrane: Possible application in nutrient mining from dairy wastewater. Sep. Purif. Technol. 2019, 217, 215–220. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Chen, Z.; Hu, C. Nitrogen-Coordinated Cobalt Embedded in a Hollow Carbon Polyhedron for Superior Catalytic Oxidation of Organic Contaminants with Peroxymonosulfate. ACS EST Eng. 2021, 1, 76–85. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, X.; Wang, G.; Qian, B.; Liu, Y.; Hu, X.; He, B.; Zhang, L.; Zhang, X. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation. Chem. Eng. J. 2020, 400, 125869. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Shan, C.; Zhang, W.; Pan, B. A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation. Chemosphere 2018, 211, 867–874. [Google Scholar] [CrossRef]
- Zhao, F.; Chu, H.; Yu, Z.; Jiang, S.; Zhao, X.; Zhou, X.; Zhang, Y. The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Sci. Total Environ. 2017, 587-588, 87–93. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, Z.; Zhen, Y.; Zhu, S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe-Co LDH/Peroxymonosulfate System. Environ. Sci. Technol. 2021, 55, 15400–15411. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Cheng, X.; Li, P.; Luo, C.; Tan, F.; Zhou, W.; Liu, W.; Zheng, L.; Wu, D. Ferrous-activated sodium percarbonate pre-oxidation for membrane fouling control during ultrafiltration of algae-laden water. Sci. Total Environ. 2020, 739, 140030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hong, H.; Lin, H.; Shen, L.; Yu, H.; Ma, G.; Chen, J.; Liao, B.-Q. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 2018, 129, 337–346. [Google Scholar] [CrossRef]
- Qu, F.; Wang, H.; He, J.; Fan, G.; Pan, Z.; Tian, J.; Rong, H.; Li, G.; Yu, H. Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: Correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals. Environ. Sci. Water Res. Technol. 2019, 5, 672–683. [Google Scholar] [CrossRef]
- Zheng, X.; Khan, M.T.; Croué, J.-P. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Res. 2014, 65, 414–424. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, W.; Li, J.; Jiang, J.; Pang, S. Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2. Sci. Total Environ. 2021, 765, 142762. [Google Scholar] [CrossRef]
AOPs | Feed Water | Results | Reference |
---|---|---|---|
Fe(II)/PMS UV/PMS UV/Fe(II)/PMS | UF of algal EOM | DOC removal and fouling control: UV/Fe(II)/PMS > Fe(II)/PMS > UV/PMS | [13] |
UV/H2O2 Coagulation | UF of algal EOM | Both reduced fouling due to the removal/breakdown of high MW substances. UV/H2O2 resulted in greater irreversible fouling due to the low MW substances generated. | [9] |
Fe(II)/permanganate Fe(II)/persulfate | UF of algal EOM | Fouling control: Fe(II)/persulfate > Fe(II)/permanganate Simultaneous oxidation and coagulation alleviated fouling. | [8] |
OMCs/PDS | UF of algal EOM | Reversible resistance was reduced by 59.5–83.2%, and irreversible resistance declined by 71.7–73.0%. | [7] |
UV/H2O2 UV/chlorine UV/persulfate | UF of algae-laden water | Fouling control: UV/persulfate > UV/H2O2 > UV/chlorine UV/chlorine aggravated the pore-blocking fouling. | [10] |
Fe(II)/S(IV) | UF of algae-laden water | Fouling was alleviated and the algal cell was intact. | [14] |
PAA UV/PAA Ultrasonic/PAA | UF of algae-laden water | Fouling control: UV/PAA > PAA > Ultrasonic/PAA High dosage of PAA (> 10 mg/L) and ultrasonic led to algal cell rupture. | [11] |
Fe(VI)/SPC | UF of algae-laden water | Fouling was alleviated and the algal cell was intact. Coagulation and oxidation simultaneously alleviated fouling. | [15] |
Fe(II)/PS Ozone | UF of algae-laden water | Fe(II)/PS alleviated fouling. Ozonation led to algal cell lysis and thus exacerbated the fouling. | [12] |
Reaction | Equation |
---|---|
(4) | |
(5) | |
(6) | |
(7) | |
(8) | |
(9) | |
(10) | |
(11) | |
(12) | |
(13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yang, H.; Wei, G.; Mameda, N.; Qu, F.; Rong, H. UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation. Membranes 2023, 13, 463. https://doi.org/10.3390/membranes13050463
Yu H, Yang H, Wei G, Mameda N, Qu F, Rong H. UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation. Membranes. 2023; 13(5):463. https://doi.org/10.3390/membranes13050463
Chicago/Turabian StyleYu, Huarong, Haiyang Yang, Guangmei Wei, Naresh Mameda, Fangshu Qu, and Hongwei Rong. 2023. "UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation" Membranes 13, no. 5: 463. https://doi.org/10.3390/membranes13050463
APA StyleYu, H., Yang, H., Wei, G., Mameda, N., Qu, F., & Rong, H. (2023). UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation. Membranes, 13(5), 463. https://doi.org/10.3390/membranes13050463