Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment
Abstract
:1. Introduction
2. Architectural Design for MFC Construction
2.1. Anode Materials
2.1.1. Carbonaceous Anode
2.1.2. Carbon Nanotubes (CNTs)
2.1.3. Graphene
2.1.4. Conductive Polymers
2.1.5. Metal and Metal Oxide Anode
2.2. Cathode Type for MFCs
2.2.1. Air-Cathodes and Aqueous Air-Cathodes
2.2.2. Biocathode
2.3. Membrane Materials
2.3.1. Ion Exchange Membrane
Cation Exchange Membrane (CEM)
Anion Exchange Membrane (AEM)
Bipolar Membrane (BPM)
2.3.2. Porous Membrane
2.4. Membrane Electrode Assemblies
2.4.1. Single-Chamber MFCs
2.4.2. Double-Chamber MFCs
2.4.3. Stacked MFCs
3. Role of MFCs in the Wastewater Treatment Process
3.1. Removal of Organic Compounds via MFC Treatment
3.2. Treatment of Nitrogen and Suphides with MFCs
3.3. Treatment of Heavy-Metal-Rich Wastewater
3.4. Organic Dye-Based Pollutant Removal through MFCs
4. Limitation of Microbial Fuel Cells
5. Future Perspective and Recommendations to Improve Microbial Fuel Cell Performance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roy, H.; Islam, M.S.; Arifin, M.T.; Firoz, S.H. Chitosan-ZnO Decorated Moringa Oleifera Seed Biochar for Sequestration of Methylene Blue: Isotherms, Kinetics, and Response Surface Analysis. Environ. Nanotech. Monit. Manag. 2022, 18, 100752. [Google Scholar] [CrossRef]
- Jahan, N.; Tahmid, M.; Shoronika, A.Z.; Fariha, A.; Roy, H.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. A Comprehensive Review on the Sustainable Treatment of Textile Wastewater: Zero Liquid Discharge and Resource Recovery Perspectives. Sustainability 2022, 14, 15398. [Google Scholar] [CrossRef]
- Rahman, T.U.; Roy, H.; Islam, M.R.; Tahmid, M.; Fariha, A.; Mazumder, A.; Tasnim, N.; Pervez, M.N.; Cai, Y.; Naddeo, V.; et al. The Advancement in Membrane Bioreactor (MBR) Technology toward Sustainable Industrial Wastewater Management. Membranes 2023, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Colantonio, N. Heavy Metal Removal from Wastewater Using Microbial Electrolysis Cells; McMaster University: Hamilton, Canada, 2016. [Google Scholar]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico–Chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Al Moinee, A.; Islam, T.; Sanzida, N. Effect of Electrodes, Aeration, Salt Bridges and Source of Microbes in a Mediator-Free Double Chambered Microbial Fuel Cell. In Proceedings of the International Conference on Chemical Engineering, Dhaka, Bangladesh, 20 December 2018. [Google Scholar]
- Parkash, A. Microbial Fuel Cells: A Source of Bioenergy. J. Microb. Biochem. Technol. 2016, 8, 247–255. [Google Scholar] [CrossRef]
- Dominguez-Benetton, X.; Varia, J.C.; Pozo, G.; Modin, O.; Ter Heijne, A.; Fransaer, J.; Rabaey, K. Metal Recovery by Microbial Electro-Metallurgy. Prog. Mater. Sci. 2018, 94, 435–461. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Lee, D.J. Microbial Fuel Cells as Pollutant Treatment Units: Research Updates. Bioresour. Technol. 2016, 217, 121–128. [Google Scholar] [CrossRef]
- Al Moinee, A.; Sanzida, N. Performance Analysis of Different Anode Materials of a Double Chambered Microbial Fuel Cell. Chem. Eng. Res. Bull. 2021, 22, 26–31. [Google Scholar] [CrossRef]
- Munoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An Overview of Microbial Fuel Cell Usage in Wastewater Treatment, Resource Recovery and Energy Production. Sci. Total Environ. 2021, 754, 142429. [Google Scholar] [CrossRef]
- Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ. Sci. Technol. 2008, 42, 8630–8640. [Google Scholar] [CrossRef]
- Milner, E.M.; Popescu, D.; Curtis, T.; Head, I.M.; Scott, K.; Yu, E.H. Microbial Fuel Cells with Highly Active Aerobic Biocathodes. J. Power Sources 2016, 324, 8–16. [Google Scholar] [CrossRef]
- Potter, M.C. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc. R. Soc. London. Ser. B 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, H.; Gu, T. A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Feng, M.; Sun, J.; Wang, R.; Qu, F.; Yang, C.; Guo, W. High-performance free-standing microbial fuel cell anode derived from Chinese date for enhanced electron transfer rates. Bioresource Technol. 2022, 353, 127151. [Google Scholar] [CrossRef]
- Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K.H. Progress in Microbial Fuel Cell Technology for Wastewater Treatment and Energy Harvesting. Chemosphere 2021, 281, 130828. [Google Scholar] [CrossRef] [PubMed]
- Fatehbasharzad, P.; Aliasghari, S.; Shaterzadeh Tabrizi, I.; Khan, J.A.; Boczkaj, G. Microbial Fuel Cell Applications for Removal of Petroleum Hydrocarbon Pollutants: A Review. Water Resour. Ind. 2022, 28, 100178. [Google Scholar] [CrossRef]
- Guo, X.; Zhan, Y.; Guo, S.; Yan, G.; Sun, S.; Zhao, L.; Geng, R. Startup and Influencing Factors of Microbial Fuel Cell with Refinery Wastewater as Fuel. Chinese J. Environ. Eng. 2013, 7, 2100–2104. [Google Scholar]
- Banerjee, A.; Calay, R.K.; Mustafa, M. Review on Material and Design of Anode for Microbial Fuel Cell. Energies 2022, 15, 2283. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent Progress in Electrodes for Microbial Fuel Cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Srinivasan, S.; Jeevanantham, S.; Kamalesh, R.; Karishma, S. Sustainable Strategy on Microbial Fuel Cell to Treat the Wastewater for the Production of Green Energy. Chemosphere 2022, 290, 133295. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhou, Y.; Jin, X.; Li, Z.; Zhang, Q. Carbon Material-Based Anodes in the Microbial Fuel Cells. Carbon Energy 2021, 3, 449–472. [Google Scholar] [CrossRef]
- Ter Heijne, A.; Hamelers, H.V.M.; Saakes, M.; Buisman, C.J.N. Performance of Non-Porous Graphite and Titanium-Based Anodes in Microbial Fuel Cells. Electrochim. Acta 2008, 53, 5697–5703. [Google Scholar] [CrossRef]
- Sayed, E.T.; Alawadhi, H.; Elsaid, K.; Olabi, A.G.; Almakrani, M.A.; Bin Tamim, S.T.; Alafranji, G.H.M.; Abdelkareem, M.A. A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. Sustainability 2020, 12, 6538. [Google Scholar] [CrossRef]
- Yuan, Y.; Jeon, Y.; Ahmed, J.; Bhargavi, G.; Venu, V.; Renganathan, S. Microbial Fuel Cells: Recent Developments in Design and Materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012034. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Lovley, D.R. Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat. Biotechnol. 2003, 21, 1229–1232. [Google Scholar] [CrossRef]
- Dhillon, S.K.; Dziegielowski, J.; Kundu, P.P.; Di Lorenzo, M. Functionalised graphite felt anodes for enhanced power generation in membrane-less soil microbial fuel cells. RSC Sustain. 2023, 1, 310–325. [Google Scholar] [CrossRef]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3341–3346. [Google Scholar] [CrossRef]
- Thepsuparungsikul, N.; Ng, T.C.; Lefebvre, O.; Ng, H.Y. Different Types of Carbon Nanotube-Based Anodes to Improve Microbial Fuel Cell Performance. Water Sci. Technol. 2014, 69, 1900–1910. [Google Scholar] [CrossRef]
- Wu, W.; Niu, H.; Yang, D.; Wang, S.; Jiang, N.; Wang, J.; Lin, J.; Hu, C. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells. Polymers 2018, 10, 759. [Google Scholar] [CrossRef]
- Upadhyayula, V.K.K.; Gadhamshetty, V. Appreciating the Role of Carbon Nanotube Composites in Preventing Biofouling and Promoting Biofilms on Material Surfaces in Environmental Engineering: A Review. Biotechnol. Adv. 2010, 28, 802–816. [Google Scholar] [CrossRef]
- Yazdi, A.A.; D’Angelo, L.; Omer, N.; Windiasti, G.; Lu, X.; Xu, J. Carbon Nanotube Modification of Microbial Fuel Cell Electrodes. Biosens. Bioelectron. 2016, 85, 536–552. [Google Scholar] [CrossRef] [PubMed]
- Keyn, M.; Adrian Krauss, T.; Kramer, A.; Ade Sugiawati, V.; Vacandio, F.; Ein-Eli, Y.; Chen, J.; Wei, S.; Xie, H. A Brief Introduction of Carbon Nanotubes: History, Synthesis, and Properties. J. Phys. Conf. Ser. 2021, 1948, 012184. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-Review: Anode Modification for Improved Performance of Microbial Fuel Cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Starowicz, A.; Zieliński, M.; Rusanowska, P.; Dębowski, M. Microbial Fuel Cell Performance Boost through the Use of Graphene and Its Modifications—Review. Energies 2023, 16, 576. [Google Scholar] [CrossRef]
- Aiswaria, P.; Naina Mohamed, S.; Singaravelu, D.L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene / Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. [Google Scholar] [CrossRef]
- Deng, F.; Sun, J.; Hu, Y.; Chen, J.; Li, S.; Chen, J.; Zhang, Y. Biofilm Evolution and Viability during in Situ Preparation of a Graphene/Exoelectrogen Composite Biofilm Electrode for a High-Performance Microbial Fuel Cell. RSC Adv. 2017, 7, 42172–42179. [Google Scholar] [CrossRef]
- Filip, J.; Tkac, J. Is Graphene Worth Using in Biofuel Cells? Electrochim. Acta 2014, 136, 340–354. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, G.; Li, X.; Zhang, W.; Zhang, J.; Ye, J.; Huang, X.; Yu, C. A Graphene Modified Anode to Improve the Performance of Microbial Fuel Cells. J. Power Sources 2011, 196, 5402–5407. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Y.X.; Li, D.B.; Yu, H.Q.; Yan, L. Preparation of a Macroporous Flexible Three Dimensional Graphene Sponge Using an Ice-Template as the Anode Material for Microbial Fuel Cells. RSC Adv. 2014, 4, 21619–21624. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Ding, L.; Ren, H.; Cui, H. Effect of Conductive Polymers Coated Anode on the Performance of Microbial Fuel Cells (MFCs) and Its Biodiversity Analysis. Biosens. Bioelectron. 2011, 26, 4169–4176. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Rudra, R.; Pattanayak, D.; Kundu, P. Conducting Polymer-Based Microbial Fuel Cells. In Enzymatic Fuel Cells: Materials and Applications; Materials Research Forum LLC: Millersville, PA, USA, 2019; pp. 173–187. ISBN 978-1-64490-007-9. [Google Scholar]
- Dumas, C.; Mollica, A.; Féron, D.; Basséguy, R.; Etcheverry, L.; Bergel, A. Marine Microbial Fuel Cell: Use of Stainless Steel Electrodes as Anode and Cathode Materials. Electrochim. Acta 2007, 53, 468–473. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, W.; Liu, J.; Wang, X.; Qu, Y.; Ren, N. A Horizontal Plug Flow and Stackable Pilot Microbial Fuel Cell for Municipal Wastewater Treatment. Bioresour. Technol. 2014, 156, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Ali Mazari, S.; Hashmi, Z.; Sattar Jatoi, A.; Abro, R. A Review of Role of Cathodes in the Performance of Microbial Fuel Cells. J. Electroanal. Chem. 2021, 899, 115673. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Duteanu, N.; Erable, B.; Senthil Kumar, S.M.; Ghangrekar, M.M.; Scott, K. Effect of Chemically Modified Vulcan XC-72R on the Performance of Air-Breathing Cathode in a Single-Chamber Microbial Fuel Cell. Bioresour. Technol. 2010, 101, 5250–5255. [Google Scholar] [CrossRef]
- Escapa, A.; San-Martín, M.I.; Mateos, R.; Morán, A. Scaling-up of Membraneless Microbial Electrolysis Cells (MECs) for Domestic Wastewater Treatment: Bottlenecks and Limitations. Bioresour. Technol. 2015, 180, 72–78. [Google Scholar] [CrossRef]
- Rusli, S.F.N.; Abu Bakar, M.H.; Loh, K.S.; Mastar, M.S. Review of High-Performance Biocathode Using Stainless Steel and Carbon-Based Materials in Microbial Fuel Cell for Electricity and Water Treatment. Int. J. Hydrogen Energy 2019, 44, 30772–30787. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Prasad, R. A Critical Review on Microbial Fuel Cells Technology: Perspectives on Wastewater Treatment. Open Biotechnol. J. 2021, 15, 131–141. [Google Scholar] [CrossRef]
- Xie, S.; Liang, P.; Chen, Y.; Xia, X.; Huang, X. Simultaneous Carbon and Nitrogen Removal Using an Oxic/Anoxic-Biocathode Microbial Fuel Cells Coupled System. Bioresour. Technol. 2011, 102, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.; Jana, P.S.; Ghangrekar, M.M. Performance Evaluation of Low Cost Microbial Fuel Cell Fabricated Using Earthen Pot with Biotic and Abiotic Cathode. Bioresour. Technol. 2010, 101, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Song, H.L.; Zhu, Y.; Li, J. Electron Transfer Mechanisms, Characteristics and Applications of Biological Cathode Microbial Fuel Cells—A Mini Review. Arab. J. Chem. 2019, 12, 2236–2243. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Kugarajah, V.; Sugumar, M. Membranes for Microbial Fuel Cells. In Microbial Electrochemical Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 143–194. [Google Scholar]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Developments and Applications. J. Memb. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Scott, K.; Yu, E.H. Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Woodhead Publishing: Sawston, UK, 2015; ISBN 9781782423966. [Google Scholar]
- Ayyaru, S.; Dharmalingam, S. Improved Performance of Microbial Fuel Cells Using. RSC Adv. 2013, 3, 25243–25251. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications Review of the Proton Exchange Membranes for Fuel Cell Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; Volume 35, ISBN 2177491223. [Google Scholar]
- Jadhav, D.A.; Ghadge, A.N.; Mondal, D.; Ghangrekar, M.M. Bioresource Technology Comparison of Oxygen and Hypochlorite as Cathodic Electron Acceptor in Microbial Fuel Cells. Bioresour. Technol. 2014, 154, 330–335. [Google Scholar] [CrossRef]
- Elumalai, V.; Dharmalingam, S. Synthesis Characterization and Performance Evaluation of Ionic Liquid Immobilized SBA-15 / Quaternised Polysulfone Composite Membrane for Alkaline Fuel Cell Microporous and Mesoporous Materials Synthesis Characterization and Performance Evaluation of Ioni. Microporous Mesoporous Mater. 2016, 236, 260–268. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Zhang, X.; Li, Q.; Cheng, C.; Shen, H.; Zhang, Z. Bioelectrochemical Remediation of Cr(VI)/Cd(II)-Contaminated Soil in Bipolar Membrane Microbial Fuel Cells. Environ. Res. 2020, 186, 109582. [Google Scholar] [CrossRef]
- Kim, C.; Lee, C.R.; Song, Y.E.; Heo, J.; Mook, S.; Kim, J.R.; Ph, D. Hexavalent Chromium as a Cathodic Electron Acceptor in a Bipolar Membrane Microbial Fuel Cell with the Simultaneous Treatment of Electroplating Wastewater. Chem. Eng. J. 2017, 328, 703–707. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Bakeri, G.; Najafpour, G.; Ghasemi, M.; Oh, S. A Review on the Effect of Proton Exchange Membranes in Microbial Fuel Cells. Biofuel Res. J. 2014, 1, 7–15. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ramli, W.; Daud, W.; Fauzi, A.; Jafari, Y.; Ismail, M. Simultaneous Wastewater Treatment and Electricity Generation by Microbial Fuel Cell: Performance Comparison and Cost Investigation of Using Na Fi on 117 and SPEEK as Separators. Desalination 2013, 325, 1–6. [Google Scholar] [CrossRef]
- Ramirez-Nava, J.; Martínez-Castrejón, M.; García-Mesino, R.L.; López-Díaz, J.A.; Talavera-Mendoza, O.; Sarmiento-Villagrana, A.; Rojano, F.; Hernández-Flores, G. The Implications of Membranes Used as Separators in Microbial Fuel Cells. Membranes 2021, 11, 738. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Sheng, G.P.; Liu, X.W.; Yu, H.Q. Recent Advances in the Separators for Microbial Fuel Cells. Bioresour. Technol. 2011, 102, 244–252. [Google Scholar] [CrossRef]
- Leong, J.X.; Daud, W.R.W.; Ghasemi, M.; Liew, K.B.; Ismail, M. Ion Exchange Membranes as Separators in Microbial Fuel Cells for Bioenergy Conversion: A Comprehensive Review. Renew. Sustain. Energy Rev. 2013, 28, 575–587. [Google Scholar] [CrossRef]
- Uddin, S.S.; Roni, K.S.; Shatil, A.H.M.D. Double Compartment Microbial Fuel Cell Design Using Salt Bridge as a Membrane with Sucrose and Starch as a Substrate. In Proceedings of the 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh, 8–10 December 2016; pp. 1–4. [Google Scholar]
- Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.E. Microbial Fuel Cell as New Technol Ogy for Bioelectricity Generation: A Review. Alexandria Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Selvasembian, R.; Mal, J.; Rani, R.; Sinha, R.; Agrahari, R.; Joshua, I.; Santhiagu, A.; Pradhan, N. Recent Progress in Microbial Fuel Cells for Industrial Effluent Treatment and Energy Generation: Fundamentals to Scale-up Application and Challenges. Bioresour. Technol. 2022, 346, 126462. [Google Scholar] [CrossRef]
- Nawaz, A.; ul Haq, I.; Qaisar, K.; Gunes, B.; Raja, S.I.; Mohyuddin, K.; Amin, H. Microbial Fuel Cells: Insight into Simultaneous Wastewater Treatment and Bioelectricity Generation. Process Saf. Environ. Prot. 2022, 161, 357–373. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Fu, G.; Zhang, Z. Simultaneous Electricity Generation and Nitrogen and Carbon Removal in Single-Chamber Microbial Fuel Cell for High-Salinity Wastewater Treatment. J. Clean. Prod. 2020, 276, 123203. [Google Scholar] [CrossRef]
- Ramya, M.; Senthil Kumar, P. A Review on Recent Advancements in Bioenergy Production Using Microbial Fuel Cells. Chemosphere 2022, 288, 132512. [Google Scholar] [CrossRef]
- Nandy, A.; Kumar, V.; Mondal, S.; Dutta, K.; Salah, M.; Kundu, P.P. Performance Evaluation of Microbial Fuel Cells: Effect of Varying Electrode Configuration and Presence of a Membrane Electrode Assembly. N. Biotechnol. 2015, 32, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Obileke, K.C.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial Fuel Cells, a Renewable Energy Technology for Bio-Electricity Generation: A Mini-Review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ng, K.H.; Papadopoulos, A.M.; Le, A.T.; Kumar, S.; Hadiyanto, H.; Pham, V.V. Microbial Fuel Cells for Bioelectricity Production from Waste as Sustainable Prospect of Future Energy Sector. Chemosphere 2022, 287, 132285. [Google Scholar] [CrossRef]
- Bakonyi, P.; Koók, L.; Keller, E.; Bélafi-Bakó, K.; Rózsenberszki, T.; Saratale, G.D.; Nguyen, D.D.; Banu, J.R.; Nemestóthy, N. Development of Bioelectrochemical Systems Using Various Biogas Fermenter Effluents as Inocula and Municipal Waste Liquor as Adapting Substrate. Bioresour. Technol. 2018, 259, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, D.A.; Ghadge, A.N.; Ghangrekar, M.M. Simultaneous Organic Matter Removal and Disinfection of Wastewater with Enhanced Power Generation in Microbial Fuel Cell. Bioresour. Technol. 2014, 163, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Aghababaie, M.; Farhadian, M.; Jeihanipour, A.; Biria, D. Effective Factors on the Performance of Microbial Fuel Cells in Wastewater Treatment—A Review. Environ. Technol. Rev. 2015, 4, 71–89. [Google Scholar] [CrossRef]
- Cao, T.N.-D.; Chen, S.-S.; Ray, S.S.; Le, H.Q.; Chang, H.-M. Application of Microbial Fuel Cell in Wastewater Treatment and Simultaneous Bioelectricity Generation. In Water and Wastewater Treatment Technologies; Bui, X.-T., Chiemchaisri, C., Fujioka, T., Varjani, S., Eds.; Springer: Singapore, 2019; pp. 501–526. ISBN 978-981-13-3259-3. [Google Scholar]
- Greenman, J.; Mendis, B.A.; Gajda, I.; Ieropoulos, I.A. Microbial Fuel Cell Compared to a Chemostat. Chemosphere 2022, 296, 133967. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, X.; Wang, H.; Zhang, Y.; Gao, Y.; Bian, C.; Wang, X.; Xu, P. Power Generation and Microbial Community Analysis in Microbial Fuel Cells: A Promising System to Treat Organic Acid Fermentation Wastewater. Bioresour. Technol. 2019, 284, 72–79. [Google Scholar] [CrossRef]
- Gude, V.G. Wastewater Treatment in Microbial Fuel Cells—An Overview. J. Clean. Prod. 2016, 122, 287–307. [Google Scholar] [CrossRef]
- Malik, S.; Kishore, S.; Dhasmana, A.; Kumari, P.; Mitra, T.; Chaudhary, V.; Kumari, R.; Bora, J.; Ranjan, A.; Minkina, T.; et al. A Perspective Review on Microbial Fuel Cells in Treatment and Product Recovery from Wastewater. Water 2023, 15, 316. [Google Scholar] [CrossRef]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–200. [Google Scholar] [CrossRef]
- Logan, B.E.; Rabaey, K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Mansoorian, H.J.; Mahvi, A.H.; Jafari, A.J.; Khanjani, N. Evaluation of Dairy Industry Wastewater Treatment and Simultaneous Bioelectricity Generation in a Catalyst-Less and Mediator-Less Membrane Microbial Fuel Cell. J. Saudi Chem. Soc. 2016, 20, 88–100. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, S.; Logan, B.E. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environ. Sci. Technol. 2005, 39, 5488–5493. [Google Scholar] [CrossRef]
- Logan, B.E.; Murano, C.; Scott, K.; Gray, N.D.; Head, I.M. Electricity Generation from Cysteine in a Microbial Fuel Cell. Water Res. 2005, 39, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, J.; Logan, B.E. Production of Electricity from Proteins Using a Microbial Fuel Cell. Water Environ. Res. 2006, 78, 531–537. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Christy, A.D.; Dehority, B.A.; Morrison, M.; Yu, Z.; Tuovinen, O.H. Electricity Generation from Cellulose by Rumen Microorganisms in Microbial Fuel Cells. Biotechnol. Bioeng. 2007, 97, 1398–1407. [Google Scholar] [CrossRef]
- Firdous, S.; Jin, W.; Shahid, N.; Bhatti, Z.A.; Iqbal, A.; Abbasi, U.; Mahmood, Q.; Ali, A. The Performance of Microbial Fuel Cells Treating Vegetable Oil Industrial Wastewater. Environ. Technol. Innov. 2018, 10, 143–151. [Google Scholar] [CrossRef]
- Min, B.; Kim, J.R.; Oh, S.E.; Regan, J.M.; Logan, B.E. Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Mohanakrishna, G.; Reddy, B.P.; Saravanan, R.; Sarma, P.N. Bioelectricity Generation from Chemical Wastewater Treatment in Mediatorless (Anode) Microbial Fuel Cell (MFC) Using Selectively Enriched Hydrogen Producing Mixed Culture under Acidophilic Microenvironment. Biochem. Eng. J. 2008, 39, 121–130. [Google Scholar] [CrossRef]
- Scott, K.; Murano, C. A Study of a Microbial Fuel Cell Battery Using Manure Sludge Waste. J. Chem. Technol. Biotechnol. 2007, 82, 809–817. [Google Scholar] [CrossRef]
- Mihai Duteanu, N.; Madhao Ghangrekar, M.; Erable, B.; Scott, K. Microbial fuel cells-an option for wastewater treatment. Environ. Eng. Manag. J. 2010, 9, 1069–1087. [Google Scholar]
- Raghavulu, S.V.; Mohan, S.V.; Goud, R.K.; Sarma, P.N. Effect of Anodic PH Microenvironment on Microbial Fuel Cell (MFC) Performance in Concurrence with Aerated and Ferricyanide Catholytes. Electrochem. Commun. 2009, 11, 371–375. [Google Scholar] [CrossRef]
- Sun, J.; Hu, Y.; Bi, Z.; Cao, Y. Improved Performance of Air-Cathode Single-Chamber Microbial Fuel Cell for Wastewater Treatment Using Microfiltration Membranes and Multiple Sludge Inoculation. J. Power Sources 2009, 187, 471–479. [Google Scholar] [CrossRef]
- Kim, J.R.; Premier, G.C.; Hawkes, F.R.; Dinsdale, R.M.; Guwy, A.J. Development of a Tubular Microbial Fuel Cell (MFC) Employing a Membrane Electrode Assembly Cathode. J. Power Sources 2009, 187, 393–399. [Google Scholar] [CrossRef]
- Morris, J.M.; Jin, S.; Crimi, B.; Pruden, A. Microbial Fuel Cell in Enhancing Anaerobic Biodegradation of Diesel. Chem. Eng. J. 2009, 146, 161–167. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, J. Simultaneous Processes of Electricity Generation and P-Nitrophenol Degradation in a Microbial Fuel Cell. Electrochem. Commun. 2009, 11, 274–277. [Google Scholar] [CrossRef]
- Thygesen, A.; Poulsen, F.W.; Min, B.; Angelidaki, I.; Thomsen, A.B. The Effect of Different Substrates and Humic Acid on Power Generation in Microbial Fuel Cell Operation. Bioresour. Technol. 2009, 100, 1186–1191. [Google Scholar] [CrossRef]
- Li, W.W.; Sheng, G.P. Microbial Fuel Cells in Power Generation and Extended Applications. Adv. Biochem. Eng. Biotechnol. 2012, 128, 165–197. [Google Scholar] [CrossRef]
- Greenman, J.; Gálvez, A.; Giusti, L.; Ieropoulos, I. Electricity from Landfill Leachate Using Microbial Fuel Cells: Comparison with a Biological Aerated Filter. Enzyme Microb. Technol. 2009, 44, 112–119. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Kim, T.G.; Cho, K.-S. Characterization of the COD Removal, Electricity Generation, and Bacterial Communities in Microbial Fuel Cells Treating Molasses Wastewater. J. Environ. Sci. Health Part A 2016, 51, 1131–1138. [Google Scholar] [CrossRef]
- Rathour, R.; Patel, D.; Shaikh, S.; Desai, C. Eco-Electrogenic Treatment of Dyestuff Wastewater Using Constructed Wetland-Microbial Fuel Cell System with an Evaluation of Electrode-Enriched Microbial Community Structures. Bioresour. Technol. 2019, 285, 121349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Kumar, V.; Malyan, S.K.; Sharma, J.; Mathimani, T.; Maskarenj, M.S.; Ghosh, P.C.; Pugazhendhi, A. Microbial Fuel Cells (MFCs) for Bioelectrochemical Treatment of Different Wastewater Streams. Fuel 2019, 254, 115526. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B.E. Effectiveness of Domestic Wastewater Treatment Using Microbial Fuel Cells at Ambient and Mesophilic Temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Ruslan, A.R.; Vadivelu, V.M. Nitrite Pre-Treatment of Dewatered Sludge for Microbial Fuel Cell Application. J. Environ. Sci. 2019, 77, 148–155. [Google Scholar] [CrossRef]
- Clauwaert, P.; Van Der Ha, D.; Boon, N.; Verbeken, K.; Verhaege, M.; Rabaey, K.; Verstraete, W. Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 7564–7569. [Google Scholar] [CrossRef]
- Zuo, J.; Cui, L.; Fan, M.; Song, W. Production of Electricity from Artificial Wastewater Using a Single Chamber Microbial Fuel Cell. Taiyangneng Xuebao/Acta Energiae Solaris Sin. 2007, 28, 320–323. [Google Scholar]
- Feng, C.; Hu, A.; Chen, S.; Yu, C.P. A Decentralized Wastewater Treatment System Using Microbial Fuel Cell Techniques and Its Response to a Copper Shock Load. Bioresour. Technol. 2013, 143, 76–82. [Google Scholar] [CrossRef]
- You, S.J.; Ren, N.Q.; Zhao, Q.L.; Kiely, P.D.; Wang, J.Y.; Yang, F.L.; Fu, L.; Peng, L. Improving Phosphate Buffer-Free Cathode Performance of Microbial Fuel Cell Based on Biological Nitrification. Biosens. Bioelectron. 2009, 24, 3698–3701. [Google Scholar] [CrossRef]
- Gregory, K.B.; Bond, D.R.; Lovley, D.R. Graphite Electrodes as Electron Donors for Anaerobic Respiration. Environ. Microbiol. 2004, 6, 596–604. [Google Scholar] [CrossRef]
- Park, Y.; Park, S.; Nguyen, V.K.; Yu, J.; Torres, C.I.; Rittmann, B.E.; Lee, T. Complete Nitrogen Removal by Simultaneous Nitrification and Denitrification in Flat-Panel Air-Cathode Microbial Fuel Cells Treating Domestic Wastewater. Chem. Eng. J. 2017, 316, 673–679. [Google Scholar] [CrossRef]
- Yang, F.-L.; Li, W.-Z.; Li, Q.; Li, P.-F.; Wang, Z.-J.; Luo, L.-N. Unravelling the Influence of Sulfate Loading on Enhancing Anaerobic Co-Digestion of Corn Stover and Bio-Kerosene Production Wastewater. J. Biosci. Bioeng. 2019, 127, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Virdis, B.; Rabaey, K.; Yuan, Z.; Keller, J. Microbial Fuel Cells for Simultaneous Carbon and Nitrogen Removal. Water Res. 2008, 42, 3013–3024. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Abbassi, R.; Garaniya, V.; Lewis, T.; Yadav, A.K. Performance of Pilot-Scale Horizontal Subsurface Flow Constructed Wetland Coupled with a Microbial Fuel Cell for Treating Wastewater. J. Water Process Eng. 2020, 33, 100994. [Google Scholar] [CrossRef]
- Das, I.; Ghangrekar, M.M.; Satyakam, R.; Srivastava, P.; Khan, S.; Pandey, H.N. On-Site Sanitary Wastewater Treatment System Using 720-L Stacked Microbial Fuel Cell: Case Study. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020025. [Google Scholar] [CrossRef]
- Naga Samrat, M.V.V.; Kesava Rao, K.; Ruggeri, B.; Tommasi, T. Denitrification of Water in a Microbial Fuel Cell (MFC) Using Seawater Bacteria. J. Clean. Prod. 2018, 178, 449–456. [Google Scholar] [CrossRef]
- Qin, M.; Hynes, E.A.; Abu-Reesh, I.M.; He, Z. Ammonium Removal from Synthetic Wastewater Promoted by Current Generation and Water Flux in an Osmotic Microbial Fuel Cell. J. Clean. Prod. 2017, 149, 856–862. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, S.; Zhao, L.; Zhong, L. Simultaneous Sulfide Removal, Nitrification, and Electricity Generation in a Microbial Fuel Cell Equipped with an Oxic Cathode. Environ. Sci. Pollut. Res. 2016, 24, 5326–5334. [Google Scholar] [CrossRef]
- Cheng, X.; He, L.; Lu, H.; Chen, Y.; Ren, L. Optimal Water Resources Management and System Benefit for the Marcellus Shale-Gas Reservoir in Pennsylvania and West Virginia. J. Hydrol. 2016, 540, 412–422. [Google Scholar] [CrossRef]
- Lee, C.L.; Brimblecombe, P. Anthropogenic Contributions to Global Carbonyl Sulfide, Carbon Disulfide and Organosulfides Fluxes. Earth Sci. Rev. 2016, 160, 1–18. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.W. Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies Used to Improve It for Microbial Fuel Cell Applications. Renew. Sustain. Energy Rev. 2016, 56, 1322–1336. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, T.; Lim, B.; Choi, C.; Park, J. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol. Biofuels 2014, 7, 9. [Google Scholar] [CrossRef]
- Ezziat, L.; Elabed, A.; Ibnsouda, S.; El Abed, S. Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal from Wastewater. Front. Energy Res. 2019, 7, 1. [Google Scholar] [CrossRef]
- Jahan, N.; Roy, H.; Reaz, A.H.; Arshi, S.; Rahman, E.; Firoz, S.H.; Islam, M.S. A Comparative Study on Sorption Behavior of Graphene Oxide and Reduced Graphene Oxide towards Methylene Blue. Case Stud. Chem. Environ. Eng. 2022, 6, 100239. [Google Scholar] [CrossRef]
- Roy, H.; Islam, M.S.; Arifin, M.T.; Firoz, S.H. Synthesis, Characterization and Sorption Properties of Biochar, Chitosan and ZnO-Based Binary Composites towards a Cationic Dye. Sustainability 2022, 14, 14571. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Z.J. Bioelectrochemical Metal Recovery from Wastewater: A Review. Water Res. 2014, 66, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Mathuriya, A.S.; Yakhmi, J.V. Microbial Fuel Cells to Recover Heavy Metals. Environ. Chem. Lett. 2014, 12, 483–494. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, L.; Pan, Y.; Quan, X.; Li Puma, G. Impact of Fe(III) as an Effective Electron-Shuttle Mediator for Enhanced Cr(VI) Reduction in Microbial Fuel Cells: Reduction of Diffusional Resistances and Cathode Overpotentials. J. Hazard. Mater. 2017, 321, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Yadav, A.; Verma, N. Simultaneous Cr(VI) Reduction and Bioelectricity Generation Using Microbial Fuel Cell Based on Alumina-Nickel Nanoparticles-Dispersed Carbon Nanofiber Electrode. Chem. Eng. J. 2017, 307, 729–738. [Google Scholar] [CrossRef]
- Ter Heijne, A.; Liu, F.; van der Weijden, R.; Weijma, J.; Buisman, C.J.N.; Hamelers, H.V.M. Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environ. Sci. Technol. 2010, 44, 4376–4381. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, B.; Zhang, S.; Xu, D.; Pan, R.; Xia, S. Embedding Microbial Fuel Cells into the Vertical Flow Constructed Wetland Enhanced Denitrogenation and Water Purification. Polish J. Environ. Stud. 2019, 28, 1799–1804. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, H.-B.; Wang, W.H.; Gu, J.D. Degradation of Dyes in Aqueous Solutions by the Fenton Process. Chemosphere 2004, 57, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Ilamathi, R.; Jayapriya, J. Microbial Fuel Cells for Dye Decolorization. Environ. Chem. Lett. 2018, 16, 239–250. [Google Scholar] [CrossRef]
- Chen, B.Y.; Xu, B.; Qin, L.J.; Lan, J.C.W.; Hsueh, C.C. Exploring Redox-Mediating Characteristics of Textile Dye-Bearing Microbial Fuel Cells: Thionin and Malachite Green. Bioresour. Technol. 2014, 169, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Jayapriya, J.; Ramamurthy, V. Use of Non-Native Phenazines to Improve the Performance of Pseudomonas Aeruginosa MTCC 2474 Catalysed Fuel Cells. Bioresour. Technol. 2012, 124, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Song, H.; Cang, N.; Li, X. Electricity Production from Azo Dye Wastewater Using a Microbial Fuel Cell Coupled Constructed Wetland Operating under Different Operating Conditions. Biosens. Bioelectron. 2015, 68, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Rabaey, K.; Rozendal, R.A.; Yuan, Z.; Keller, J. Decolorization of Azo Dyes in Bioelectrochemical Systems. Environ. Sci. Technol. 2009, 43, 5137–5143. [Google Scholar] [CrossRef]
- Chen, B.Y.; Zhang, M.M.; Chang, C.T.; Ding, Y.; Lin, K.L.; Chiou, C.S.; Hsueh, C.C.; Xu, H. Assessment upon Azo Dye Decolorization and Bioelectricity Generation by Proteus Hauseri. Bioresour. Technol. 2010, 101, 4737–4741. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Lu, A.; Jin, S.; Quan, C.; Wang, C.; Wang, X.; Zeng, C.; Yan, Y. Photocatalytically Improved Azo Dye Reduction in a Microbial Fuel Cell with Rutile-Cathode. Bioresour. Technol. 2010, 101, 3500–3505. [Google Scholar] [CrossRef]
- Hou, B.; Hu, Y.; Sun, J. Performance and Microbial Diversity of Microbial Fuel Cells Coupled with Different Cathode Types during Simultaneous Azo Dye Decolorization and Electricity Generation. Bioresour. Technol. 2012, 111, 105–110. [Google Scholar] [CrossRef]
- Chen, B.Y.; Xu, B.; Yueh, P.L.; Han, K.; Qin, L.J.; Hsueh, C.C. Deciphering Electron-Shuttling Characteristics of Thionine-Based Textile Dyes in Microbial Fuel Cells. J. Taiwan Inst. Chem. Eng. 2015, 51, 63–70. [Google Scholar] [CrossRef]
- Sivasankar, P.; Poongodi, S.; Seedevi, P.; Sivakumar, M.; Murugan, T.; Loganathan, S. Bioremediation of Wastewater through a Quorum Sensing Triggered MFC: A Sustainable Measure for Waste to Energy Concept. J. Environ. Manage. 2019, 237, 84–93. [Google Scholar] [CrossRef]
- Kalathil, S.; Lee, J.; Cho, M.H. Granular Activated Carbon Based Microbial Fuel Cell for Simultaneous Decolorization of Real Dye Wastewater and Electricity Generation. N. Biotechnol. 2011, 29, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, S.; Cirik, K.; Akman, D.; Sahinkaya, E.; Cinar, O. Treatment of Azo Dye-Containing Synthetic Textile Dye Effluent Using Sulfidogenic Anaerobic Baffled Reactor. Bioresour. Technol. 2013, 146, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Shantaram, A.; Beyenal, H.; Veluchamy, R.R.A.; Lewandowski, Z. Wireless Sensors Powered by Microbial Fuel Cells. Environ. Sci. Technol. 2005, 39, 5037–5042. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Yu, H.Q.; He, Z. Towards Sustainable Wastewater Treatment by Using Microbial Fuel Cells-Centered Technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bhatnagar, P.; Dhingra, S.; Upadhyay, U.; Sreedhar, I. Wastewater Treatment and Energy Production by Microbial Fuel Cells. Biomass Convers. Biorefin. 2021, 13, 3569–3592. [Google Scholar] [CrossRef]
- Palanisamy, G.; Jung, H.Y.; Sadhasivam, T.; Kurkuri, M.D.; Kim, S.C.; Roh, S.H. A Comprehensive Review on Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes. J. Clean. Prod. 2019, 221, 598–621. [Google Scholar] [CrossRef]
- Chen, S.; Patil, S.A.; Brown, R.K.; Schröder, U. Strategies for Optimizing the Power Output of Microbial Fuel Cells: Transitioning from Fundamental Studies to Practical Implementation. Appl. Energy 2019, 233–234, 15–28. [Google Scholar] [CrossRef]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational Parameters Affecting the Performance of a Mediator-Less Microbial Fuel Cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, H.S.; Hyun, M.S.; Chang, I.S.; Kim, M.; Kim, B.H. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella Putrefaciens. Enzyme Microb. Technol. 2002, 30, 145–152. [Google Scholar] [CrossRef]
- Oh, S.; Min, B.; Logan, B.E. Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells. Environ. Sci. Technol. 2004, 38, 4900–4904. [Google Scholar] [CrossRef] [PubMed]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.C.; Banks, C.E. Microbial Fuel Cells: An Overview of Current Technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Borja-Maldonado, F.; López Zavala, M.Á. Contribution of Configurations, Electrode and Membrane Materials, Electron Transfer Mechanisms, and Cost of Components on the Current and Future Development of Microbial Fuel Cells. Heliyon 2022, 8, e09849. [Google Scholar] [CrossRef]
- Mohamed, A.; Ha, P.T.; Beyenal, H. Kinetics and Scale up of Oxygen Reducing Cathodic Biofilms. Biofilm 2021, 3, 100053. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Martínez, V.M.; Gómez-Coma, L.; Pérez, G.; Ortiz, A.; Ortiz, I. Current Applications and Future Perspectives of Microbial Fuel Cell Technology. In Bioelectrochemical Systems: Vol. 2 Current and Emerging Applications; Kumar, P., Kuppam, C., Eds.; Springer: Singapore, 2020; pp. 299–321. ISBN 978-981-15-6868-8. [Google Scholar]
- Ben Liew, K.; Daud, W.R.W.; Ghasemi, M.; Leong, J.X.; Su Lim, S.; Ismail, M. Non-Pt Catalyst as Oxygen Reduction Reaction in Microbial Fuel Cells: A Review. Int. J. Hydrog. Energy 2014, 39, 4870–4883. [Google Scholar] [CrossRef]
- Santoro, C.; Kodali, M.; Shamoon, N.; Serov, A.; Soavi, F.; Merino-Jimenez, I.; Gajda, I.; Greenman, J.; Ieropoulos, I.; Atanassov, P. Increased Power Generation in Supercapacitive Microbial Fuel Cell Stack Using FeNC Cathode Catalyst. J. Power Sources 2019, 412, 416–424. [Google Scholar] [CrossRef]
- Mittal, N.; Kumar, A. Microbial Fuel Cell as Water-Energy-Environment Nexus: A Relevant Strategy for Treating Streamlined Effluents. Energy Nexus 2022, 7, 100097. [Google Scholar] [CrossRef]
- Choudhury, P.; Prasad Uday, U.S.; Bandyopadhyay, T.K.; Ray, R.N.; Bhunia, B. Performance Improvement of Microbial Fuel Cell (MFC) Using Suitable Electrode and Bioengineered Organisms: A Review. Bioengineered 2017, 8, 471–487. [Google Scholar] [CrossRef]
Anode Materials | Advantages | Disadvantages |
---|---|---|
Carbonaceous anode |
|
|
Carbon nanotube (CNT) |
|
|
Graphene |
| Complex synthesis procedure |
Conductive polymer |
|
|
Metal |
|
|
Metal oxide |
| Expensive for large-scale implementation |
Cathode Type | Advantages | Disadvantages |
---|---|---|
Air-cathode and aqueous air-cathode |
|
|
Biocathodes |
|
|
Membranes | Advantages | Disadvantages |
---|---|---|
Cation exchange membrane |
|
|
Anion exchange membrane |
|
|
Bipolar membrane |
|
|
Porous membrane |
|
|
Organic Pollutant Sources | MFC Configuration Systems | Hydraulic Retention Time (h) | Operational Conditions | COD Removal Efficiency (%) | Power Generation Density (mW/m2) | References |
---|---|---|---|---|---|---|
Complex wastewater contaminated with drugs, chemical intermediates, dye and dye intermediates, pesticides | Design: Dual chamber Volume: 0.75 L | -- | pH: 7.82 COD (g/L): 12.1 | ῀62 | 65.82 | [101] |
Confectionery wastewater | Cathode: Air Design: Single chamber Volume: 0.9 L | -- | pH: 7 COD (g/L): 1.0 | >92 | 373 | [102] |
Acetate (40 mM) | Cathode: Air Design: Tubular Volume: 0.2 L | -- | pH: 7 COD (g/L): | -- | -- | [103] |
Diesel contaminated wastewater, range organics -C8 to C25 | Design: Dual chamber Volume: 0.45 L | -- | pH: 3 (Cathode) COD (g/L): 0.300 g Diesel/ L | 82 | 32 | [104] |
Synthetic wastewater | Design: Double cell Volume: 0.300 L | 96 | pH: -- COD (g/L): 0.812 g/ L of glucose | 85 (TOC) | [105] | |
Filtrated wastewater plus acetate (glucose or xylose) | Design: Dual cell Volume: 0.600 L | _ | pH: 7.6 COD (g/L): 1.13 g/ L of glucose | _ | 130 ± 5 (for acetate) | [106] |
Domestic wastewater and glucose | Design: Dual chamber mediator less Volume: 0.24 L | -- | pH: 7 COD (g/L): 0.5–0.6 | -- | 9.3 | [107] |
Landfill leachate | Design: Single chamber downflow Volume: 0.90 L | 4.7 | pH: 7COD (g/L): 0.468- 0.630 (BOD) | 57% (BOD) | 0.19 | [108] |
Dairy industry wastewater | Design: Catalyst and mediator-less membrane MFC | -- | COD: 90.46% | 621.13 | [91] | |
Molasses wastewater | Design: Single and dual chamber MFC | -- | COD 89–90% | 7.9 + 2.56 | [109] | |
Coking wastewater | Design: Single-chambered fluidized MFC | -- | -- | 2.13 + 0.01 | [110] |
Organic Pollutant Sources | MFC Configuration Systems | Pollutant Removal (%) | COD Removal Efficiency (%) | Power Generation Density (mW/m2) | References |
---|---|---|---|---|---|
Domestic wastewater | Five units of air-cathode MFC | Nitrogen—94% | 85% | -- | [126] |
Wastewater, consortium of Thauera | Single-chambered MFC | Nitrogen—95% | 90% | -- | [120] |
Wastewater | Three-chambered oxic-cathode and anoxic-cathode MFC | Sulfur—28.9% | -- | 428.0 ± 26.2 | [126] |
Sulphate-rich pollutant | Dual-chamber | Sulfur—63% | -- | 5100 | [111] |
Agricultural wastewater | MFCs with single-chamber air-cathode and two chamber aqueous cathode | Ammonia—83% | 83 | 45 | [97] |
Beat sugar wastewater | Up-flow anaerobic sludge blanket reactor MFC | Sulfate—52.7% | 53.2% | 1410.2 | [127] |
Type of Dye in Wastewater | MFC Configuration | Microbe Sources | Initial Concentration (mg/L) | Color Removal Efficiency (%) | Electricity Generation | References |
---|---|---|---|---|---|---|
Acid orange 7 | Two equal rectangular Perspex frames | Microbial consortium | 0.06 | -- | 0.31 ± 0.03 W/m3 | [145] |
Diazo dye C.I. reactive blue 160 (RBu160) | Single-chamber MFC | Proteus hauseri ZMd44 | 450–600 | -- | 197 W/m2 | [146] |
Methyl orange | Dual-chamber MFC | Anaerobic sludge from Gaobeidian wastewater treatment plant | 10–20 | 73.4 | -- | [147] |
Congo red | Air-cathode | Mixture of aerobic and anaerobic sludge from Liede municipal wastewater treatment plant | 300 | 90 | 192 mW/m2 | [148] |
Thionine-based textile dye | Membrane-free air-cathode single-chamber MFCs | Proteus hauseri ZMd44 | 40 | -- | 83.39 ± 0.28 m | [149] |
Reactive brilliant red X-3B (ABRX3) | Microbial fuel cell coupled constructed wetland (CW-MFC) | Microbial fuel cell coupled constructed wetland (CW-MFC) | 300 | 95.6 | 0.852 | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, H.; Rahman, T.U.; Tasnim, N.; Arju, J.; Rafid, M.M.; Islam, M.R.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes 2023, 13, 490. https://doi.org/10.3390/membranes13050490
Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, Pervez MN, Cai Y, Naddeo V, Islam MS. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes. 2023; 13(5):490. https://doi.org/10.3390/membranes13050490
Chicago/Turabian StyleRoy, Hridoy, Tanzim Ur Rahman, Nishat Tasnim, Jannatul Arju, Md. Mustafa Rafid, Md. Reazul Islam, Md. Nahid Pervez, Yingjie Cai, Vincenzo Naddeo, and Md. Shahinoor Islam. 2023. "Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment" Membranes 13, no. 5: 490. https://doi.org/10.3390/membranes13050490
APA StyleRoy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, M. M., Islam, M. R., Pervez, M. N., Cai, Y., Naddeo, V., & Islam, M. S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490