Finned Tubular Air Gap Membrane Distillation
Abstract
:1. Introduction
2. Experimental
2.1. Membranes
2.2. Finned Tubular Air Gap Membrane Distillation Module
2.3. Finned Tubular Air Gap Membrane Distillation Test
2.4. Mass Transfer for Membrane Distillation
3. Results and Discussion
3.1. Effect of Air Gap Structures
3.2. Effect of Feed Parameters
3.3. Capacity Factor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Size of the test membrane (m2) |
B | Total mass transfer coefficient (kg/m2/Pa/s) |
cf | Concentration of the feed |
cp | Concentration of the permeate water |
J | Transmembrane flux (kg/m2/h) |
m | Mass of the permeate water collected (kg) |
Pf | Vapor pressure of the feed side (Pa) |
Pc | Vapor pressure of the cooling side (Pa) |
R | Salt rejection |
t | Predetermined time of the experimental process (h) |
Greek letter | |
Σ | Efficiency coefficient |
References
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation using low-grade energy for desalination: A review. J. Environ. Chem. Eng. 2021, 9, 105818. [Google Scholar] [CrossRef]
- Abid, M.B.; Wahab, R.A.; Salam, M.A.; Moujdin, I.A.; Gzara, L. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023, 9, e12810. [Google Scholar] [CrossRef]
- Francis, L.; Ahmed, F.E.; Hilal, N. Advances in membrane distillation module configurations. Membranes 2022, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Amigo, J.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Bahar, R.; Ng, K.C. Fresh water production by membrane distillation (MD) using marine engine’s waste heat. Sustain. Energy Technol. Assess. 2020, 42, 100860. [Google Scholar] [CrossRef]
- Ho, C.D.; Chen, L.; Yang, Y.L.; Chen, S.T.; Lim, J.W.; Chen, Z.-Z. Permeate flux enhancement in air gap membrane distillation modules with inserting Λ-Ribs carbon-fiber open slots. Membranes 2023, 13, 66. [Google Scholar] [CrossRef]
- Lawal, D.; Abdul Azeem, M.; Khalifa, A.; Falath, W.; Baroud, T.; Antar, M. Performance improvement of an air gap membrane distillation process with rotating fan. Appl. Therm. Eng. 2022, 204, 117964. [Google Scholar] [CrossRef]
- Siddiqui, A.; Farhat, N.; Bucs, S.S.; Linares, R.V.; Picioreanu, C.; Kruithof, J.C.; van Loosdrecht, M.C.M.; Kidwell, J.; Vrouwenvelder, J.S. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Res. 2016, 91, 55–67. [Google Scholar] [CrossRef]
- Hagedorn, A.; Fieg, G.; Winter, D.; Koschikowski, J.; Grabowski, A.; Mann, T. Membrane and spacer evaluation with respect to future module design in membrane distillation. Desalination 2017, 413, 154–167. [Google Scholar] [CrossRef]
- Cancilla, N.; Tamburini, A.; Tarantino, A.; Visconti, S.; Ciofalo, M. Friction and heat transfer in membrane distillation channels: An experimental study on conventional and novel spacers. Membranes 2022, 12, 1029. [Google Scholar] [CrossRef]
- Cai, J.; Yin, H.; Guo, F. Transport analysis of material gap membrane distillation desalination processes. Desalination 2020, 481, 114361. [Google Scholar] [CrossRef]
- Swaminathan, J.; Chung, H.W.; Warsinger, D.M.; AlMarzooqi, F.A.; Arafat, H.A.; Lienhard, V.J.H. Energy efficiency of permeate gap and novel conductive gap membrane distillation. J. Membr. Sci. 2016, 502, 171–178. [Google Scholar] [CrossRef]
- Warsinger, D.E.M.; Swaminathan, J.; Maswadeh, L.A.; Lienhard, V.J.H. Superhydrophobic condenser surfaces for air gap membrane distillation. J. Membr. Sci. 2015, 492, 578–587. [Google Scholar] [CrossRef]
- Fattahi Juybari, H.; Parmar, H.B.; Alshubbar, A.D.; Young, K.L.; Warsinger, D.M. Porous condensers can double the efficiency of membrane distillation. Desalination 2023, 545, 116129. [Google Scholar] [CrossRef]
- Bahar, R.; Hawlader, M.N.A.; Ariff, T.F. Channeled coolant plate: A new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit. Desalination 2015, 359, 71–81. [Google Scholar] [CrossRef]
- Mahdi, J.; Mohammad, K.; Mehdi, B.S.; Hessam, H.A. Improving the performance of air gap membrane distillation process using a developed tubular condenser compared to a flat plate condenser. Desalin. Water Treat. 2019, 139, 39–52. [Google Scholar] [CrossRef]
- Narayan, A.; Pitchumani, R. Analysis of an air-cooled air gap membrane distillation module. Desalination 2020, 475, 114179. [Google Scholar] [CrossRef]
- Cong, S.; Miao, Q.; Guo, F. Mass transfer analysis of air-cooled membrane distillation configuration for desalination. Membranes 2021, 11, 281. [Google Scholar] [CrossRef]
- Li, Q.; Omar, A.; Cha-Umpong, W.; Liu, Q.; Li, X.; Wen, J.; Wang, Y.; Razmjou, A.; Guan, J.; Taylor, R.A. The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment. Appl. Energy 2020, 276, 115437. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Tai, Z.S.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Sep. Purif. Technol. 2019, 217, 71–84. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Zargar, M. Performance analysis of tubular membrane distillation modules: An experimental and CFD analysis. Chem. Eng. Res. Des. 2022, 183, 478–493. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Nosrati, A. Performance analysis of a thermal-driven tubular direct contact membrane distillation system. Appl. Therm. Eng. 2019, 159, 113887. [Google Scholar] [CrossRef]
- Xuan Thanh, B.; Ngo, T.; Nguyen, T.; Nguyen, H.; Hoang, T. Review on membrane module configurations used for membrane distillation process. GeoSci. Eng. 2019, 65, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Ge, J.; Li, J.; Jin, Y. Distillation performance in a novel minichannel membrane distillation device. Chem. Eng. J. 2023, 462, 142335. [Google Scholar] [CrossRef]
- Cheng, L.; Lin, Y.; Chen, J. Enhanced air gap membrane desalination by novel finned tubular membrane modules. J. Membr. Sci. 2011, 378, 398–406. [Google Scholar] [CrossRef]
- Shahu, V.T.; Thombre, S.B. Analysis and optimization of a new cylindrical air gap membrane distillation system. Water Supply 2020, 20, 361–371. [Google Scholar] [CrossRef]
- Shahu, V.T.; Thombre, S.B. Experimental analysis of a novel helical air gap membrane distillation system. Water Supply 2021, 21, 1450–1463. [Google Scholar] [CrossRef]
- Cai, J.; Luo, Y.; Chen, J.; Guo, F. Investigation of interfacial crystallization fouling behaviors and membrane re-functionalization based on a long-distance membrane distillation module. Desalination 2022, 534, 115800. [Google Scholar] [CrossRef]
- Cai, J.; Guo, F. Study of mass transfer coefficient in membrane desalination. Desalination 2017, 407, 46–51. [Google Scholar] [CrossRef]
- Warsinger, D.E.M.; Swaminathan, J.; Lienhard, J.H. Effect of module inclination angle on air gap membrane distillation. In Proceedings of the 15th International Heat Transfer Conference IHTC, Kyoto, Japan, 10–15 August 2014. [Google Scholar] [CrossRef]
- Guan, Y.; Li, J.; Cheng, F.; Zhao, J.; Wang, X. Influence of salt concentration on DCMD performance for treatment of highly concentrated NaCl, KCl, MgCl2 and MgSO4 solutions. Desalination 2015, 355, 110–117. [Google Scholar] [CrossRef]
- Sparenberg, M.; Hanot, B.; Molina-Fernández, C.; Luis, P. Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions. Sep. Purif. Technol. 2021, 275, 119193. [Google Scholar] [CrossRef]
Nominal Pore Size | Porosity | Thickness | Water Contact Angle |
---|---|---|---|
0.22 µm | 75 ± 5% | 35 ± 5 µm | 152 ± 5° |
Outer Diameter | Inner Diameter | Tube Length | Air Gap Width | Air Gap Depth |
---|---|---|---|---|
18 ± 0.3 mm | 10 ± 0.3 mm | 200 ± 0.3 mm | 4 ± 0.3 mm | 2 ± 0.3 mm |
K-Type Thermocouple | Peristaltic Pump | Electronic Balance | Digital Caliper |
---|---|---|---|
±0.1 °C | ±0.1 mL/min | ±0.01 g | ±0.01 mm |
Reference | Module | Air Gap Depth/mm | Salinity | Feed/Coolant Temperature/°C | Air Gap Structure | Flux /(kg/m2/h) |
---|---|---|---|---|---|---|
[14] | Plate and frame | 3.2 | 35 g/kg | 60/40 | Plastic mesh | 2.3 |
Copper foam | 5.0 | |||||
[15] | Plate and frame | 1 | 30,000 ppm | 55/10 | Circle fins | 3.98 |
Rectangle fins | 4.11 | |||||
Triangle fins | 3.92 | |||||
[25] | Finned tubular | 1 | 0.55% | 75/50 | 4 Grooves | 10.5 |
[26] | Cylindrical | 3 | 5 g/L | 60/30 | - | 3.6 |
[27] | Helical | 3 | 30 g/L | 55/29 | - | 4.35 |
This work | Finned tubular | 2 | 50 g/kg | 55/25 | Tapered | 8.21 |
Flat | 7.39 | |||||
Expanded | 6.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Guo, F. Finned Tubular Air Gap Membrane Distillation. Membranes 2023, 13, 498. https://doi.org/10.3390/membranes13050498
Wu Z, Guo F. Finned Tubular Air Gap Membrane Distillation. Membranes. 2023; 13(5):498. https://doi.org/10.3390/membranes13050498
Chicago/Turabian StyleWu, Zhiqiang, and Fei Guo. 2023. "Finned Tubular Air Gap Membrane Distillation" Membranes 13, no. 5: 498. https://doi.org/10.3390/membranes13050498
APA StyleWu, Z., & Guo, F. (2023). Finned Tubular Air Gap Membrane Distillation. Membranes, 13(5), 498. https://doi.org/10.3390/membranes13050498