The Effect of Complex Modifier Consisting of Star Macromolecules and Ionic Liquid on Structure and Gas Separation of Polyamide Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization
2.4. Gas Separation Tests
3. Results
3.1. Physical Properties
3.2. Membrane Structure
3.3. Thermal Stability
3.4. Gas Transport Properties
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
- Jin, Y.; Wang, T.; Che, X.; Dong, J.; Li, Q.; Yang, J. Poly(arylene pyridine)s: New alternative materials for high temperature polymer electrolyte fuel cells. J. Power Sources 2022, 526, 231131. [Google Scholar] [CrossRef]
- Yampolskii, Y.; Pinnau, I.; Freeman, B. Materials Science of Membranes for Gas and Vapor Separation; John Wiley and Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Koros, W.J. Gas separation membranes: Needs for combined materials science and processing approaches. Macromol. Symp. 2002, 188, 13–22. [Google Scholar] [CrossRef]
- Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [Google Scholar] [CrossRef]
- Min, H.J.; Kim, M.-B.; Bae, Y.-S.; Thallapally, P.K.; Lee, J.H.; Kim, J.H. Polymer-Infiltrated Metal–Organic Frameworks for Thin-Film Composite Mixed-Matrix Membranes with High Gas Separation Properties. Membranes 2023, 13, 287. [Google Scholar] [CrossRef]
- González-Revuelta, D.; Fallanza, M.; Ortiz, A.; Gorri, D. Thin-Film Composite Matrimid-Based Hollow Fiber Membranes for Oxygen/Nitrogen Separation by Gas Permeation. Membranes 2023, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Vu, D.Q.; Koros, W.J.; Miller, S.J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 2003, 211, 311–334. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, C.; Wu, Y.; Liu, P.; Wan, Y.; Sun, X.; Wang, L.; Zhang, Y. Preparation of a PVA/Chitosan/Glass Fiber Composite Membrane and the Performance in CO2 Separation. Membranes 2023, 13, 36. [Google Scholar] [CrossRef]
- Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Eljaddi, T.; Bouillon, J.; Roizard, D.; Lebrun, L. Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO2 Separation. Membranes 2022, 12, 836. [Google Scholar] [CrossRef]
- Zainuddin, M.I.F.; Ahmad, A.L.; Shah Buddin, M.M.H. Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application. Membranes 2023, 13, 337. [Google Scholar] [CrossRef]
- Kim, S.; Pechar, T.W.; Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330–339. [Google Scholar] [CrossRef]
- Bastin, L.; Bárcia, P.S.; Hurtado, E.J.; Silva, J.A.; Rodrigues, A.E.; Chen, B. A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J. Phys. Chem. C 2008, 112, 1575–1581. [Google Scholar] [CrossRef]
- Saqib, S.; Rafiq, S.; Chawla, M.; Saeed, M.; Muhammad, N.; Khurram, S.; Majeed, K.; Khan, A.L.; Ghauri, M.; Jamil, F. Facile CO2 separation in composite membranes. Chem. Eng. Technol. 2019, 42, 30–44. [Google Scholar] [CrossRef]
- Mahajan, R.; Burns, R.; Schaeffer, M.; Koros, W.J. Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci. 2002, 86, 881–890. [Google Scholar] [CrossRef]
- Okumu, E.; Gurkan, T.; Ylmaz, L. Effect of fabrication and process parameters on morphology and performance of a PAN-based zeolite-filled pervaporation membrane. J. Membr. Sci. 2003, 223, 23–38. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, W.H.; Chang, Y.H. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modied CNTs. Carbohydr. Polym. 2009, 76, 232–238. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Krasnopeeva, E.L.; Kalyuzhnaya, L.M.; Saprykina, N.N.; Vinogradova, L.V. Mixed matrix membranes with hybrid star-shaped macromolecules for mono- and dihydric alcohols pervaporation. Sep. Purif. Technol. 2015, 143, 192–200. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Rostovtseva, V.A.; Pientka, Z.; Vinogradova, L.V.; Polotskaya, G.A. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core. Pet. Chem. 2018, 58, 296–303. [Google Scholar] [CrossRef]
- Pulyalina, A.; Porotnikov, D.; Rudakova, D.; Faykov, I.; Chislova, I.; Rostovtseva, V.; Vinogradova, L.; Toikka, A.; Polotskaya, G. Advanced membranes containing star macromolecules with C60 core for intensification of propyl acetate production. Chem. Eng. Res. Des. 2018, 135, 197–206. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Larkina, A.A.; Tataurov, M.V.; Vinogradova, L.V.; Polotskaya, G.A. Hybrid macromolecular stars with fullerene(C60) core included in polyphenyleneisophthalamide membranes for n-butanol dehydration. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 54–60. [Google Scholar] [CrossRef]
- Rynkowska, E.; Fatyeyeva, K.; Kujawski, W. Application of polymer-based membranes containing ionic liquids in membrane separation processes: A critical review. Rev. Chem. Eng. 2018, 34, 341–363. [Google Scholar] [CrossRef]
- Kárászová, M.; Kacirková, M.; Friess, K.; Izák, P. Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review. Sep. Purif. Technol. 2014, 132, 93–101. [Google Scholar] [CrossRef]
- Ferraro, G.; Astorino, C.; Bartoli, M.; Martis, A.; Lettieri, S.; Pirri, C.F.; Bocchini, S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation. Membranes 2022, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Vroulias, D.; Staurianou, E.; Ioannides, T.; Deimede, V. Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO2 Separation. Membranes 2023, 13, 26. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, H.; Wang, Q.; Ma, W.; Yang, G.; Xu, S.; Li, S.; Su, G.; Qu, Y.; Zhang, M.; et al. Optimization of a MOF Blended with Modified Polyimide Membrane for High-Performance Gas Separation. Membranes 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Livi, S.; Gérard, J.-F.; Duchet-Rumeau, J. Ionic Liquids as Polymer Additives. In Applications of Ionic Liquids in Polymer Science and Technology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–21. [Google Scholar]
- Min, H.J.; Kim, Y.J.; Kang, M.; Seo, C.-H.; Kim, J.-H.; Kim, J.H. Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties. J. Membr. Sci. 2022, 660, 120837. [Google Scholar] [CrossRef]
- Habib, N.; Durak, O.; Zeeshan, M.; Uzun, A.; Keskin, S. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. J. Membr. Sci. 2022, 658, 120712. [Google Scholar] [CrossRef]
- Lebedev, V.T.; Torok, G.; Vinogradova, L.V. Structure and supramolecular structures of star-shaped fullerene-containing heteroarm polymers in deuterotoluene. Polym. Sci. Ser. A 2011, 53, 12–23. [Google Scholar] [CrossRef]
- Rostovtseva, V.A.; Pulyalina, A.Y.; Dubovenko, R.R.; Saprykina, N.N.; Vinogradova, L.V.; Polotskaya, G.A. Influence of ionic liquid on transport properties of hybrid membranes in the lactic acid dehydration process. Membr. Membr. Technol. 2021, 3, 274–281. [Google Scholar] [CrossRef]
- Rostovtseva, V.; Pulyalina, A.; Dubovenko, R.; Faykov, I.; Subbotina, K.; Saprykina, N.; Novikov, A.; Vinogradova, L.; Polotskaya, G. Enhancing Pervaporation Membrane Selectivity by Incorporating Star Macromolecules Modified with Ionic Liquid for Intensification of Lactic Acid Dehydration. Polymers 2021, 13, 1811. [Google Scholar] [CrossRef]
- Penkova, A.V.; Polotskaya, G.A.; Toikka, A.M.; Trhova, M.; Slouf, M.; Urbanova, M.; Brus, J.; Brozova, L.; Pientka, Z. Structure and pervaporation properties of poly(phenylene-iso-phtalamide) membranes modified by fullerene. Macromol. Mater. Eng. 2009, 294, 432–440. [Google Scholar] [CrossRef]
- Avagimova, N.; Polotskaya, G.; Saprykina, N.; Toikka, A.; Pientka, Z. Poly(phenylene-iso-phtalamide)/montmorillonite mixed matrix membranes for pervaporation of methanol-toluene mixture. Sep. Sci. Technol. 2013, 48, 2513–2523. [Google Scholar] [CrossRef]
- Penkova, A.V.; Kuzminova, A.I.; Dmitrenko, M.E.; Surkova, V.A.; Liamin, V.P.; Markelov, D.A.; Komolkin, A.V.; Poloneeva, D.Y.; Laptenkova, A.V.; Selyutin, A.A. Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal-organic framework UiO-66 (NH2)-EDTA for highly efficient methanol isolation. Sep. Purif. Technol. 2021, 263, 118370. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Q.; Li, W.; You, X.; Liu, C.; Fortner, J.D. Hydrophilic montmorillonite in tailoring the structure and selectivity of polyamide membrane. J. Membr. Sci. 2022, 657, 120674. [Google Scholar] [CrossRef]
- Avagimova, N.; Polotskaya, G.; Toikka, A.; Pulyalina, A.; Morávková, Z.; Trchová, M.; Pientka, Z. Effect of nanodiamonds additives on structure and gas transport properties of poly(phenylene-iso-phtalamide) matrix. J. Appl. Polym. Sci. 2018, 135, 1–8. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Atta, R.R.; Zolotarev, A.A.; Mazur, A.S.; Vezo, O.S.; Lahderanta, E.; Markelov, D.A.; Ermakov, S.S. Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Sep. Purif. Technol. 2019, 226, 241–251. [Google Scholar] [CrossRef]
- You, L.; Guo, Y.; He, Y.; Huo, F.; Zeng, S.; Li, C.; Zhang, X.; Zhang, X. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane. Front. Chem. Sci. Eng. 2022, 16, 141–151. [Google Scholar] [CrossRef]
- Vinogradova, L.V. Star-shaped polymers with the fullerene C60 branching center. Russ. Chem. Bull. 2012, 61, 907–925. [Google Scholar] [CrossRef]
- Belnikevitch, N.G.; Mrkvičková, L.; Quadrat, O. Stereo complexes in solutions of syndio- and isotactic poly(methyl methacrylate) mixtures: 1. Aggregation time and character of aggregated particles in different solvents. Polymer 1983, 247, 713–718. [Google Scholar] [CrossRef]
- Malykh, O.V.; Golub, A.Y.; Teplyakov, V.V. Polymeric membrane materials: New aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Adv. Colloid Interface Sci. 2011, 164, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.S.; Meleshko, T.K.; Polotskaya, G.A.; Kashina, A.V.; Gofman, I.V.; Zoolshoev, Z.F.; Lavrentyev, V.K.; Pientka, Z.; Yakimansky, A.V. Dual-phase polyphenylene oxide membranes with copolyimide branched modifiers. J. Appl. Polym. Sci. 2020, 137, 49543. [Google Scholar] [CrossRef]
- Pulyalina, A.; Rostovtseva, V.; Polotskaya, G.; Vinogradova, L.; Zoolshoev, Z.; Simonova, M.; Hairullin, A.; Toikka, A.; Pientka, Z. Hybrid macromolecular stars incorporated poly(phenylene oxide) membranes: Organization, physical, and gas separation properties. Polymer 2019, 172, 355–364. [Google Scholar] [CrossRef]
- Tian, N.; Meleshko, T.; Polotskaya, G.; Gofman, I.; Kashina, A.; Kukarkina, N.; Vlasova, E.; Zoolshoev, Z.; Yakimansky, A. Influence of macromolecular brushes with polyimide backbones and poly(methyl methacrylate) side chains on structure, physical and transport properties of polyphthalamide. Polym. Eng. Sci. 2020, 60, 481–490. [Google Scholar] [CrossRef]
- Bel’nikevich, N.; Budtova, T.; Nikolaeva, O.; Vesnebolotskaya, S. The correctness of using a viscometric method as a test on interpolymer complex formation in polymer mixtures. Polym. Sci. B 2002, 44, 27–31. [Google Scholar]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
Gas | He | CO2 | O2 | N2 |
---|---|---|---|---|
Diameter of gas molecule (Å) | 1.8 | 3.01 | 2.83 | 3.0 |
Sample | [η], dL/g | Tg, °C | Density, g/cm3 |
---|---|---|---|
PA | 2.66 | 260 | 1.326 |
PA/HSM | 2.60 | 256 | 1.313 |
PA/(HSM:IL) | 2.50 | 253 | 1.288 |
Sample | Tensile Strength, MPa | Yield Strength, MPa | Elastic Modulus, MPa | Elongation at Break, % |
---|---|---|---|---|
PA | 44 | 46 | 1700 | 70 |
PA/HSM | 49 | 55 | 1850 | 50 |
PA/(HSM:IL) | 45 | 53 | 1800 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faykov, I.; Polotskaya, G.; Kuryndin, I.; Zoolshoev, Z.; Saprykina, N.; Tian, N.; Sorokina, A.; Pulyalina, A. The Effect of Complex Modifier Consisting of Star Macromolecules and Ionic Liquid on Structure and Gas Separation of Polyamide Membrane. Membranes 2023, 13, 516. https://doi.org/10.3390/membranes13050516
Faykov I, Polotskaya G, Kuryndin I, Zoolshoev Z, Saprykina N, Tian N, Sorokina A, Pulyalina A. The Effect of Complex Modifier Consisting of Star Macromolecules and Ionic Liquid on Structure and Gas Separation of Polyamide Membrane. Membranes. 2023; 13(5):516. https://doi.org/10.3390/membranes13050516
Chicago/Turabian StyleFaykov, Ilya, Galina Polotskaya, Ivan Kuryndin, Zoolsho Zoolshoev, Natalia Saprykina, Nadezhda Tian, Angelina Sorokina, and Alexandra Pulyalina. 2023. "The Effect of Complex Modifier Consisting of Star Macromolecules and Ionic Liquid on Structure and Gas Separation of Polyamide Membrane" Membranes 13, no. 5: 516. https://doi.org/10.3390/membranes13050516
APA StyleFaykov, I., Polotskaya, G., Kuryndin, I., Zoolshoev, Z., Saprykina, N., Tian, N., Sorokina, A., & Pulyalina, A. (2023). The Effect of Complex Modifier Consisting of Star Macromolecules and Ionic Liquid on Structure and Gas Separation of Polyamide Membrane. Membranes, 13(5), 516. https://doi.org/10.3390/membranes13050516