On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrospun Membranes
2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. BET Surface Area
2.3.3. Capillary Liquid Porometry
2.3.4. Water Uptake and Swelling
2.3.5. Ion-Exchange Capacity
2.4. Membrane Performance
2.4.1. Static Lysozyme Adsorption
2.4.2. Dynamic Lysozyme Adsorption
3. Results and Discussion
3.1. Electrospun sPEEK Membrane Adsorbers
3.2. The Effect of Fiber Diameter
3.3. The Effect of Sulfonation Degree
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, J.S.; Settele, E.S.; Brondízio, H.T.; Ngo, M.; Guèze, J.; Agard, A.; Arneth, P.; Balvanera, K.A.; Brauman, S.H.M.; Butchart, K.M.A.; et al. IPBES, Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019; ISBN 9783947851133.
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marĩas, B.J.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Kehrein, P.; Van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A Critical Review of Resource Recovery from Municipal Wastewater Treatment Plants-Market Supply Potentials, Technologies and Bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P. Advances in Biological Treatment of Industrial Waste Water and Their Recylcing for a Sustainable Future; Springer: Singapore, 2019; ISBN 9789811314674. [Google Scholar]
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular Nutrient Solutions for Agriculture and Wastewater—A Review of Technologies and Practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Yadav, G.; Mishra, A.; Ghosh, P.; Sindhu, R.; Vinayak, V.; Pugazhendhi, A. Technical, Economic and Environmental Feasibility of Resource Recovery Technologies from Wastewater. Sci. Total Environ. 2021, 796, 149022. [Google Scholar] [CrossRef] [PubMed]
- Udugama, I.A.; Petersen, L.A.H.; Falco, F.C.; Junicke, H.; Mitic, A.; Alsina, X.F.; Mansouri, S.S.; Gernaey, K.V. Resource Recovery from Waste Streams in a Water-Energy-Food Nexus Perspective: Toward More Sustainable Food Processing. Food Bioprod. Process. 2020, 119, 133–147. [Google Scholar] [CrossRef]
- Avramescu, M.E.; Zandrie Borneman, M.W. Membrane Chromatography. In Handbook of Membrane Separations; Routledge Handbooks Online: London, UK, 2008; pp. 25–63. [Google Scholar]
- Yang, X.; Merenda, A.; AL-Attabi, R.; Dumée, L.F.; Zhang, X.; Thang, S.H.; Pham, H.; Kong, L. Towards next Generation High Throughput Ion Exchange Membranes for Downstream Bioprocessing: A Review. J. Memb. Sci. 2022, 647, 120325. [Google Scholar] [CrossRef]
- Mattiasson, B. Expanded Bed Chromatography; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1999; Volume 8, pp. 1–271. [Google Scholar] [CrossRef]
- McDonald, P.D.; Bidlingmeyer, B.A. Strategies for Successful Preparative Liquid Chromatography. J. Chromatogr. Libr. 1987, 38, 1–103. [Google Scholar] [CrossRef]
- Ghosh, R. Protein Separation Using Membrane Chromatography: Opportunities and Challenges. J. Chromatogr. A 2002, 952, 13–27. [Google Scholar] [CrossRef]
- Unger, K.K.; Lamotte, S.; Machtejevas, E. Column Technology in Liquid Chromatography; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780124158078. [Google Scholar]
- Liapis, A.I.; McCoy, M.A. Theory of Perfusion Chromatography. J. Chromatogr. A 1992, 599, 87–104. [Google Scholar] [CrossRef]
- Mattiasson, B.; Nandakumar, M.P. Physicochemical Basis of Expanded-Bed Adsorption for Protein Purification. Sep. Sci. Technol. 2000, 2, 417–430. [Google Scholar] [CrossRef]
- Orr, V.; Zhong, L.; Moo-Young, M.; Chou, C.P. Recent Advances in Bioprocessing Application of Membrane Chromatography. Biotechnol. Adv. 2013, 31, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in Adsorptive Membranes for Separation—A Review. Sep. Purif. Technol. 2021, 255, 117772. [Google Scholar] [CrossRef]
- Boi, C.; Malavasi, A.; Carbonell, R.G.; Gilleskie, G. A Direct Comparison between Membrane Adsorber and Packed Column Chromatography Performance. J. Chromatogr. A 2020, 1612, 460629. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Duan, C.; Yan, Z.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Electrospun Nanofibrous Composite Materials: A Versatile Platform for High Efficiency Protein Adsorption and Separation. Compos. Commun. 2018, 8, 92–100. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.H.; Tian, M.; Wang, R.; Fane, A.G. Progress in Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Yin, J.Y.; Boaretti, C.; Lorenzetti, A.; Martucci, A.; Roso, M.; Modesti, M. Effects of Solvent and Electrospinning Parameters on the Morphology and Piezoelectric Properties of PVDF Nanofibrous Membrane. Nanomaterials 2022, 12, 962. [Google Scholar] [CrossRef]
- Menkhaus, T.J.; Fong, H. Electrospun Nanofibers for Protein Adsorption; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780323512701. [Google Scholar]
- HMTShirazi, R.; Mohammadi, T.; Asadi, A.A.; Tofighy, M.A. Electrospun Nanofiber Affinity Membranes for Water Treatment Applications: A Review. J. Water Process Eng. 2022, 47, 102795. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers 2022, 14, 1594. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Liu, Y.; Meng, L.; Ma, M. Functionalized Electrospun Nanofiber Membranes for Water Treatment: A Review. Sci. Total Environ. 2020, 739, 139944. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wei, C.; Ng, I.; Loke, P.; Lin, K.; Chang, Y. Effective Purification of Lysozyme from Chicken Egg White by Tris(Hydroxymethyl Aminomethane Affinity Nanofiber Membrane. Food Chem. 2020, 327, 127038. [Google Scholar] [CrossRef]
- Thi, D.; Huong, M.; Liu, B.; Siong, W.; Loke, P. Highly Efficient Dye Removal and Lysozyme Purification Using Strong and Weak Cation-Exchange Nanofiber Membranes. Int. J. Biol. Macromol. 2020, 165, 1410–1421. [Google Scholar] [CrossRef]
- Zhang, L.; Menkhaus, T.J.; Fong, H. Fabrication and Bioseparation Studies of Adsorptive Membranes/Felts Made from Electrospun Cellulose Acetate Nanofibers. J. Memb. Sci. 2008, 319, 176–184. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Chu, J.; Yao, D.; Zhang, Y.; Meng, J. Electrospun Poly(Styrene-Co-Maleic Anhydride) Nanofibrous Membrane: A Versatile Platform for Mixed Mode Membrane Adsorbers. Appl. Surf. Sci. 2019, 484, 62–71. [Google Scholar] [CrossRef]
- Ma, Z.; Lan, Z.; Matsuura, T.; Ramakrishna, S. Electrospun Polyethersulfone Affinity Membrane: Membrane Preparation and Performance Evaluation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3686–3694. [Google Scholar] [CrossRef] [PubMed]
- Schneiderman, S.; Zhang, L.; Fong, H.; Menkhaus, T.J. Surface-Functionalized Electrospun Carbon Nanofiber Mats as an Innovative Type of Protein Adsorption/Purification Medium with High Capacity and High Throughput. J. Chromatogr. A 2011, 1218, 8989–8995. [Google Scholar] [CrossRef] [PubMed]
- Ng, I.S.; Song, C.P.; Ooi, C.W.; Tey, B.T.; Lee, Y.H.; Chang, Y.K. Purification of Lysozyme from Chicken Egg White Using Nanofiber Membrane Immobilized with Reactive Orange 4 Dye. Int. J. Biol. Macromol. 2019, 134, 458–468. [Google Scholar] [CrossRef]
- Yang, X.; Hsia, T.; Merenda, A.; AL-Attabi, R.; Dumee, L.F.; Thang, S.H.; Kong, L. Constructing Novel Nanofibrous Polyacrylonitrile (PAN)-Based Anion Exchange Membrane Adsorber for Protein Separation. Sep. Purif. Technol. 2022, 285, 120364. [Google Scholar] [CrossRef]
- Wetter, L.R.; Deutsch, H.F. Immunological Studies on Egg White Proteins. J. Biol. Chem. 1951, 192, 237–242. [Google Scholar] [CrossRef]
- Guélat, B.; Ströhlein, G.; Lattuada, M.; Morbidelli, M. Electrostatic Model for Protein Adsorption in Ion-Exchange Chromatography and Application to Monoclonal Antibodies, Lysozyme and Chymotrypsinogen A. J. Chromatogr. A 2010, 1217, 5610–5621. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y. Near-Infrared PH Sensor Based on a SPEEK–Polyaniline Polyelectrolyte Complex Membrane. Proceedings 2019, 3, 11. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Ali, S.A.; Zaidi, S.M.J.; Mezghani, K. Novel Sulfonated Poly(Ether Ether Ketone)/Phosphonated Polysulfone Polymer Blends for Proton Conducting Membranes. J. Mater. Res. 2012, 27, 1958–1968. [Google Scholar] [CrossRef]
- Nawaz, N.; Wen, S.; Wang, F.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022, 27, 6305. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhao, L.Y.; Zhu, L.T.; Deng, X.Y.; Chen, W.L. Effect of Experimental Parameters on Nanofiber Diameter from Electrospinning with Wire Electrodes. IOP Conf. Ser. Mater. Sci. Eng. 2017, 230, 012043. [Google Scholar] [CrossRef]
- Boaretti, C.; Roso, M.; Lorenzetti, A.; Modesti, M. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology. Materials 2015, 8, 4096–4117. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Wycisk, R.; Pintauro, P.N. Nafion/PVDF Nanofiber Composite Membranes for Regenerative Hydrogen/Bromine Fuel Cells. J. Memb. Sci. 2015, 490, 103–112. [Google Scholar] [CrossRef]
- Blake, C.; Koenig, D.; Mair, G.; North, A.; Phillips, D.; Sarma, V. The Three-Dimensional Structure of Hen Eggwhite Lysozyme. Nature 1965, 206, 757–761. [Google Scholar] [CrossRef]
- Dismer, F.; Petzold, M.; Hubbuch, J. Effects of Ionic Strength and Mobile Phase PH on the Binding Orientation of Lysozyme on Different Ion-Exchange Adsorbents. J. Chromatogr. A 2008, 1194, 11–21. [Google Scholar] [CrossRef]
- Dismer, F.; Hubbuch, J. A Novel Approach to Characterize the Binding Orientation of Lysozyme on Ion-Exchange Resins. J. Chromatogr. A 2007, 1149, 312–320. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J.; Zhou, J. Mesoscopic Coarse-Grained Simulations of Hydrophobic Charge Induction Chromotography (HCIC) for Protein Purification. AIChE J. 2015, 61, 2035–2047. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J.; Zhou, J. Mesoscopic Coarse-Grained Simulations of Lysozyme Adsorption. J. Phys. Chem. B 2014, 118, 4451–4460. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, J.; Jiang, S. Parallel Tempering Monte Carlo Simulations of Lysozyme Orientation on Charged Surfaces. J. Chem. Phys. 2010, 132, 065101. [Google Scholar] [CrossRef] [PubMed]
- Pai, C.; Boyce, M.C.; Rutledge, G.C. Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromolecules 2009, 42, 2102–2114. [Google Scholar] [CrossRef]
- Wang, L.; Pai, C.L.; Boyce, M.C.; Rutledge, G.C. Wrinkled Surface Topographies of Electrospun Polymer Fibers. Appl. Phys. Lett. 2009, 94, 6–9. [Google Scholar] [CrossRef]
- Tan, Y.; Hu, B.; Song, J.; Chu, Z.; Wu, W. Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview; Springer: Singapore, 2020; Volume 12, ISBN 0123456789. [Google Scholar]
- Bagherzadeh, R.; Najar, S.S.; Latifi, M.; Tehran, M.A.; Kong, L. A Theoretical Analysis and Prediction of Pore Size and Pore Size Distribution in Electrospun Multilayer Nanofibrous Materials. J. Biomed. Mater. Res.-Part A 2013, 101, 2107–2117. [Google Scholar] [CrossRef] [PubMed]
- Krifa, M.; Yuan, W. Morphology and Pore Size Distribution of Electrospun and Centrifugal Forcespun Nylon 6 Nanofiber Membranes. Text. Res. J. 2016, 86, 1294–1306. [Google Scholar] [CrossRef]
- Li, D.; Frey, M.W.; Joo, Y.L. Characterization of Nanofibrous Membranes with Capillary Flow Porometry. J. Membr. Sci. 2006, 286, 104–114. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Sampson, W.W. Statistical Geometry of Pores and Statistics of Porous Nanofibrous Assemblies. J. R. Soc. Interface 2005, 2, 309–318. [Google Scholar] [CrossRef]
- Zaidi, S.M.J.; Mikhailenko, S.D.; Robertson, G.P.; Guiver, M.D.; Kaliaguine, S. Proton Conducting Composite Membranes from Polyether Ether Ketone and Heteropolyacids for Fuel Cell Applications. J. Memb. Sci. 2000, 173, 17–34. [Google Scholar] [CrossRef]
- Roelofs, K.S. Sulfonated Poly (Ether Ether Ketone) Based Membranes for Direct Ethanol Fuel Cells. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2010; pp. 1–199. [Google Scholar]
- Xu, K.; Ouberai, M.M.; Welland, M.E. A Comprehensive Study of Lysozyme Adsorption Using Dual Polarization Interferometry and Quartz Crystal Microbalance with Dissipation. Biomaterials 2013, 34, 1461–1470. [Google Scholar] [CrossRef]
- Chiu, H.T.; Lin, J.M.; Cheng, T.H.; Chou, S.Y.; Huang, C.C. Direct Purification of Lysozyme from Chicken Egg White Using Weak Acidic Polyacrylonitrile Nanofiber-Based Membranes. J. Appl. Polym. Sci. 2012, 125, E616–E621. [Google Scholar] [CrossRef]
- Rajesh, S.; Schneiderman, S.; Crandall, C.; Fong, H.; Menkhaus, T.J. Synthesis of Cellulose-Graft-Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS Appl. Mater. Interfaces 2017, 9, 41055–41065. [Google Scholar] [CrossRef] [PubMed]
- Menkhaus, T.J.; Varadaraju, H.; Zhang, L.; Schneiderman, S.; Bjustrom, S.; Liu, L.; Fong, H. Electrospun Nanofiber Membranes Surface Functionalized with 3-Dimensional Nanolayers as an Innovative Adsorption Medium with Ultra-High Capacity and Throughput. Chem. Commun. 2010, 46, 3720–3722. [Google Scholar] [CrossRef] [PubMed]
- Sanaeepur, H.; Ebadi Amooghin, A.; Shirazi, M.M.A.; Pishnamazi, M.; Shirazian, S. Water Desalination and Ion Removal Using Mixed Matrix Electrospun Nanofibrous Membranes: A Critical Review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Keating, J.J.; Imbrogno, J.; Belfort, G. Polymer Brushes for Membrane Separations: A Review. ACS Appl. Mater. Interfaces 2016, 8, 28383–28399. [Google Scholar] [CrossRef]
- Dai, J.; Bao, Z.; Sun, L.; Hong, S.U.; Baker, G.L.; Bruening, M.L. High-Capacity Binding of Proteins by Poly (Acrylic Acid) Brushes and Their Derivatives. Langmuir 2006, 22, 4274–4281. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sun, L.; Dai, J.; Baker, G.L.; Bruening, M.L. High-Capacity Purification of His-Tagged Proteins by Affinity Membranes Containing Functionalized Polymer Brushes. Biomacromolecules 2007, 8, 3102–3107. [Google Scholar] [CrossRef]
- Janzen, R.; Unger, K.K.; Müller, W.; Hearn, M.T.W. Adsorption of Proteins on Porous and Non-Porous Poly(Ethyleneimine) and Tentacle-Type Anion Exchangersa. J. Chromatogr. A 1990, 522, 77–93. [Google Scholar] [CrossRef]
17 wt % sPEEK-62 | 19 wt % sPEEK-62 | 25 wt % sPEEK-62 | |
---|---|---|---|
BET surface area (m2) | 11.2 ± 0.7 | 12.3 ± 2.1 | 16.5 ± 1.3 |
Adsorption capacity (mg/g) | 66.0 ± 6.4 | 60.1 ± 6.6 | 76.0 ± 3.0 |
Adsorption capacity (mg/m2) | 5.9 ± 0.7 | 4.9 ± 1.0 | 4.6 ± 0.4 |
Recovery (%) | 37 ± 11% | 35 ± 6% | 36 ± 3% |
sPEEK-52 | sPEEK-62 | sPEEK-72 | |
---|---|---|---|
Water uptake (%) | 34 ± 5% | 39 ± 2% | 51 ± 7% |
Swelling thickness (%) | 11 ± 1% | 12 ± 9% | 18 ± 8% |
Ion-exchange capacity (meq/g) | 1.30 ± 0.02 | 1.56 ± 0.05 | 1.89 ± 0.09 |
sPEEK-52 | sPEEK-62 | sPEEK-72 | |
---|---|---|---|
BET surface area (m2) | 14.9 ± 2.9 | 12.3 ± 2.1 | 9.5 ± 2.4 |
Adsorption capacity (mg/g) | 65.7 ± 5.4 | 60.1 ± 6.6 | 63.9 ± 3.4 |
Adsorption capacity (mg/m2) | 4.4 ± 0.9 | 4.9 ± 1.0 | 6.7 ± 1.7 |
Recovery (%) | 35 ± 5% | 35 ± 6% | 43 ± 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joosten, N.; Wyrębak, W.; Schenning, A.; Nijmeijer, K.; Borneman, Z. On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. Membranes 2023, 13, 543. https://doi.org/10.3390/membranes13060543
Joosten N, Wyrębak W, Schenning A, Nijmeijer K, Borneman Z. On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. Membranes. 2023; 13(6):543. https://doi.org/10.3390/membranes13060543
Chicago/Turabian StyleJoosten, Niki, Weronika Wyrębak, Albert Schenning, Kitty Nijmeijer, and Zandrie Borneman. 2023. "On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber" Membranes 13, no. 6: 543. https://doi.org/10.3390/membranes13060543
APA StyleJoosten, N., Wyrębak, W., Schenning, A., Nijmeijer, K., & Borneman, Z. (2023). On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. Membranes, 13(6), 543. https://doi.org/10.3390/membranes13060543