Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency
Abstract
:1. Introduction
2. Mathematical Formulations
2.1. Dialysis-and-Ultrafiltration Operation in a Concentric Tubular Module
2.1.1. Velocity Distributions
2.1.2. Mass Balance Equations
2.2. Pure Membrane Dialysis Operation in a Concentric Tubular Module
3. Numerical Solutions for Solving Concentration Distributions
4. Dialysis Rate, Dialysis Efficiency and Dialysis Rate Improvement
5. Results and Discussions
5.1. The Numerical Solutions Validated by Convergence Tolerance
5.2. Concentration Distributions
5.3. Dialysis Rate
5.4. Dialysis Efficiency and Dialysis Rate Improvement
6. Conclusions
- Average concentration distributions of the dialysis system in the retentate phase decrease along the axial direction and with decreasing ultrafiltration rate whereas the average concentration of the dialysate phase increases with increasing ultrafiltration rate and the retentate phase flow rate.
- Both average concentration distributions in the retentate and dialysate phases decrease with the volumetric flow rate of the dialysate phase.
- The average concentration distribution of the retentate phase decreases with increases in both the membrane sieving coefficient and channel thickness ratio.
- The average outlet concentration of retentate phase increases with increasing retentate phase flow rate because the residence time is increased as well as with increasing ultrafiltration rate, channel thickness ratio and volumetric flow rate of the dialysate phase.
- The results show that the dialysis rate increases with increases in both retentate and dialysate phase flow rates, membrane sieving coefficient, ultrafiltration rate and channel thickness ratio relative to the system without ultrafiltration operation.
- The dialysis efficiency increases with increasing dialysate phase flow rate, ultrafiltration rate, membrane sieving coefficient and channel thickness ratio but with decreasing volumetric flow rate of the retentate phase.
- The dialysis rate improvements increase with increasing ultrafiltration rate and membrane sieving coefficient but with decreasing channel thickness ratio and both retentate and dialysate phase flow rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Solute concentration in the stream (mol m−3) | |
Solute diffusivity in both retentate and dialysate phases (m2 s−1) | |
Solute diffusivity in membrane (m2 s−1) | |
Dialysis rate improvement | |
Node numbers in -direction of dialysate phase | |
Length of membrane dialyzer (m) | |
Dialysis rate (mol s−1) | |
Node numbers in -direction of retentate phase | |
Node numbers in -direction | |
-direction step sizes of the Crank–Nicolson method | |
Pressure in retentate phase (N m−2) | |
Pressure in dialysate phase (N m−2) | |
Transversal coordinate (m) | |
Outside radius of inner tube (m) | |
Inside radius of the shell tube (m) | |
Inside radius of inner tube (m) | |
Reynolds number | |
Velocity distribution of the retentate phase (m s−1) | |
Velocity distribution of the dialysate phase (m s−1) | |
Averaged velocity of the retentate phase (m s−1) | |
Averaged velocity of the dialysate phase (m s−1) | |
Inlet volumetric flow rate of the retentate phase (m3 s−1) | |
Outlet volumetric flow rate of the retentate phase (m3 s−1) | |
Inlet volumetric flow rate of the dialysate phase (m3 s−1) | |
Outlet volumetric flow rate of the dialysate phase (m3 s−1) | |
Ultrafiltration rate (m3 s−1) | |
Velocity distribution of the dialysate phase (m s−1) | |
Ultrafiltration flux distribution (m s−1) | |
Average ultrafiltration flux on the inner surface of the membrane (m s−1) | |
Average ultrafiltration flux on the outer surface of the membrane (m s−1) | |
Axial coordinate along the flow direction (m) | |
Greek letters | |
Ratio of inside radius of inner tube to shell radius, | |
Ratio of outside radius of inner tube to shell radius, | |
Membrane thickness (m) | |
Membrane porosity | |
Dimensionless transversal coordinate | |
Membrane sieving coefficient | |
Wall Reynolds number of the retentate phase, | |
Wall Reynolds number of the dialysate phase, | |
Wall Reynolds number of the dialysate phase () | |
Dimensionless longitudinal coordinate | |
Density () | |
Kinetic viscosity () | |
Dimensionless solute concentration | |
Dimensionless average solute concentration | |
Dialysis efficiency | |
Stream function | |
Subscripts | |
In the retentate phase | |
In the dialysate phase | |
At the inlet | |
At the outlet | |
On the membrane surface |
Appendix A
Appendix B
Appendix C
References
- Chen, L.; Wu, Y.L.; Dong, H.J.; Meng, M.J.; Li, C.X.; Yan, Y.S.; Chen, J. An overview on membrane strategies for rare earths extraction and separation. Sep. Purifi. Technol. 2018, 197, 70–85. [Google Scholar] [CrossRef]
- Overmans, S.; Ignacz, G.; Beke, A.K.; Xu, J.J.; Saikaly, P.E.; Szekely, G.; Lauersen, K.J. Continuous extraction and concentration of secreted metabolites from engineered microbes using membrane technology. Green Chem. 2022, 24, 5479–5489. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, F.; Rezakazemi, M.; Zhang, W.X.; Lu, C.F.; Chang, H.X.; Quan, X.J. Modeling of a CO2-piperazine-membrane absorption system. Chem. Eng. Res. Des. 2018, 131, 375–384. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.L.; Yu, H.; Liu, Y.X.; Hussain, A. Carbon dioxide capture using liquid absorption methods: A review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.B.; Yang, Z.J.; Wang, Y.M.; Jiang, C.X.; Ge, L.; Bakangura, E.; Xu, T.W. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Epsztein, R.; Shaulsky, E.; Qin, M.H.; Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. J. Membr. Sci. 2019, 580, 316–326. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. J. Membr. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Thomas, N.; Mavukkandy, M.O.; Loutatidou, S.; Arafat, H.A. Membrane distillation research & implementation: Lessons from the past five decades. Sep. Purif. Technol. 2017, 189, 108–127. [Google Scholar]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Patel, R.; Mujtaba, I.M. Scope and limitations of modelling, simulation, and optimisation of a spiral wound reverse osmosis process-based water desalination. Processes 2020, 8, 573. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Lake, M.A.; Melsheimer, N.J. Mass transfer characterization of Donnan dialysis. AIChE J. 1978, 24, 130–137. [Google Scholar] [CrossRef]
- Moonen, H.; Niefind, N.J. Alcohol reduction in beer by means of dialysis. Desalination 1982, 41, 327–335. [Google Scholar] [CrossRef]
- Klein, E.; Holland, E.F.; Lebeouf, A.; Donnand, A.; Smith, J.K. Transport and mechanical properties of hemodialysis hollow fibers. J. Membr. Sci. 1976, 1, 371–396. [Google Scholar] [CrossRef]
- Ho, W.S.W.; Sirkar, K.K. Handbook of Membranes; Van Nostrand Reinhold: New York, NY, USA, 1992. [Google Scholar]
- Meng, F.; Seredych, M.; Chen, C.; Gura, V.; Mikhalovsky, S.; Sandeman, S.; Ingavle, G.; Ozulumba, T.; Miao, L.; Anasori, B.; et al. Mxene sorbents for removal of urea from dialysate: A step toward the Wearable Artificial Kidney. ACS Nano 2018, 12, 10518–10528. [Google Scholar] [CrossRef]
- Colton, C.K.; Smith, K.A.; Stroeve, P.; Merrill, E.W. Laminar flow mass transfer in a flat duct with permeable walls. AIChE J. 1971, 17, 773–780. [Google Scholar] [CrossRef]
- Walker, G.; Davis, T. Mass transfer in laminar flow between parallel permeable plates. AIChE J. 1974, 20, 881–889. [Google Scholar] [CrossRef]
- Cooney, D.O.; Kim, S.S.; Davis, E.J. Analyses of mass transfer in hemodialyzers for laminar blood flow and homogeneous dialysate. Chem. Eng. Sci. 1974, 29, 1731–1738. [Google Scholar] [CrossRef]
- Özdural, A.R.; Alkan, A. Derivation of a new explicit equation for the determination of overall mass transfer coefficients in continuous dialyzers. J. Membr. Sci. 2003, 223, 49–57. [Google Scholar] [CrossRef]
- Popovich, R.; Christopher, G.; Babb, A.L. The effect of membrane diffusion and ultrafiltration properties on hemodialyzer design and performance. Chem. Eng. Prog. Symp. Ser. 1971, 67, 105–115. [Google Scholar]
- Jagannathan, R.; Shettigar, U.R. Analysis of a tubular hemodialyser—Effect of ultrafiltration and dialysate concentration. Med. Biol Eng. Comput. 1977, 15, 500–512. [Google Scholar] [CrossRef]
- Henderson, L.W. Current status of hemofiltration. Artif. Organs. 1978, 2, 120–124. [Google Scholar] [CrossRef]
- Leber, H.W.; Wizemann, V.; Goubeaud, G.; Rawer, P.; Schutterle, G. Hemodiafiltration: A new alternative to hemofiltration and conventional hemodialysis. Artif. Organs. 1978, 2, 150–153. [Google Scholar] [CrossRef]
- Yeh, H.M.; Chen, T.W.; Chen, Y.J. Mass transfer for dialysis with ultrafiltration flux declined in cross-flow membrane modules. J. Chem. Eng. Jpn. 2000, 33, 440–448. [Google Scholar] [CrossRef]
- Tu, J.W.; Ho, C.D.; Yeh, H.M. The analytical and experimental studies of the parallel-plate concurrent dialysis system coupled with ultrafiltration. J. Membr. Sci. 2006, 281, 676–684. [Google Scholar] [CrossRef]
- Tu, J.W.; Ho, C.D.; Chuang, C.J. Effect of ultrafiltration on the mass-transfer efficiency improvement in a parallel-plate countercurrent dialysis system. Desalination 2009, 242, 70–83. [Google Scholar] [CrossRef]
- Lin, J.Y.; Huang, J.M.; Wang, J.; Yu, J.W.; You, X.Q.; Lin, X.C.; der Bruggen, B.V.; Zhao, S.F. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis. J. Membr. Sci. 2021, 624, 119116–119126. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, Z.Y.; Qiu, M.; He, C.J. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. J. Membr. Sci. 2021, 618, 118740–118750. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.L.; Han, Q.; Lin, H.B.; Li, Q.; Hu, J.; Liu, F. Anticoagulant dialyzer with enhanced Ca2+ chelation and hydrophilicity for heparin free hemodialysis. J. Membr. Sci. 2020, 604, 118082–118092. [Google Scholar] [CrossRef]
- Chen, Q.; He, Y.; Zhao, Y.P.; Chen, L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. J. Membr. Sci. 2021, 625, 119174–119188. [Google Scholar] [CrossRef]
- Du, X.M.; Wang, Z.; Zhang, H.Y.; Yuan, Y.J.; Wang, H.; Zhang, Z.G. Prepared poly(aryl piperidinium) anion exchange membranes for acid recovery to improve dialysis coefficients and selectivity. J. Membr. Sci. 2021, 619, 11805–118812. [Google Scholar] [CrossRef]
- Berman, A.S. Laminar Flow in Channels with Porous Walls. J. Appl. Phys. 1953, 24, 1232. [Google Scholar] [CrossRef]
- Yuan, S.W.; Finkelstein, A.B.; Brooklyn, N.Y. Trans. ASME 1956, 78, 719–724. [Google Scholar]
- Tu, J.W.; Ho, C.D. Two-dimensional mass-transfer model of a flat-plate dialyzer with ultrafiltration operation. Chem. Eng. Technol. 2010, 33, 1358–1368. [Google Scholar] [CrossRef]
- Yeh, H.M.; Ward, H.C. The improvement in separation of concentric tube thermal diffusion columns. Chem. Eng. Sci. 1971, 26, 937–947. [Google Scholar] [CrossRef]
First Order | Second Order | First Order | Second Order | |
---|---|---|---|---|
0.05 | 4.05 | 4.05 | 3.94 | 3.94 |
0.25 | 3.07 | 3.07 | 2.99 | 2.99 |
0.45 | 0.78 | 0.78 | 0.76 | 0.76 |
Zero Order | First Order | Zero Order | First Order | |
---|---|---|---|---|
0.55 | 1.16 | 1.16 | 1.17 | 1.17 |
0.75 | 5.46 | 5.46 | 5.48 | 5.48 |
0.95 | 1.82 | 1.82 | 1.83 | 1.83 |
Dimensionless Concentration | P = 100 | P = 200 | ||
---|---|---|---|---|
N = J = 400 | N = J = 500 | N = J = 400 | N = J = 500 | |
0.543 | 0.543 | 0.543 | 0.543 | |
0.945 | 0.945 | 0.945 | 0.945 | |
0.278 | 0.278 | 0.278 | 0.278 | |
0.017 | 0.017 | 0.017 | 0.017 |
20 | 103.55 | 208.79 | 87.26 | 76.73 |
30 | 84.34 | 169.64 | 63.31 | 43.47 |
40 | 72.69 | 145.83 | 48.93 | 23.81 |
0.3 | 212.23 | 176.21 | 317.25 | 274.24 |
0.5 | 164.40 | 145.83 | 305.13 | 278.61 |
0.7 | 136.52 | 127.00 | 277.15 | 261.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-D.; Tu, J.-W.; Lim, J.-W.; Lai, W.-C. Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency. Membranes 2023, 13, 556. https://doi.org/10.3390/membranes13060556
Ho C-D, Tu J-W, Lim J-W, Lai W-C. Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency. Membranes. 2023; 13(6):556. https://doi.org/10.3390/membranes13060556
Chicago/Turabian StyleHo, Chii-Dong, Jr-Wei Tu, Jun-Wei Lim, and Wei-Chi Lai. 2023. "Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency" Membranes 13, no. 6: 556. https://doi.org/10.3390/membranes13060556
APA StyleHo, C. -D., Tu, J. -W., Lim, J. -W., & Lai, W. -C. (2023). Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency. Membranes, 13(6), 556. https://doi.org/10.3390/membranes13060556