Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials
Abstract
:1. Introduction
2. Constitutive Microflora
2.1. Resistance of Planktonic and Biofilm Embedded Cells against Cleaning Process
2.2. Effectiveness of Common CIP Protocols
2.3. Emergence of Bacterial Predominance within the Biofilm Matrix after the Prolonged Use of Membranes
3. Novel Strategies for the Mitigation of Membrane Biofilms
3.1. Bio-Cleaners; Degradation of Biofilms Using Enzyme-Based Cleaners
3.2. Use of Antimicrobial Peptides
Inhibition of Biofilm Microflora Using the Natural Antimicrobials
3.3. Preventing Biofilm Development Using Quorum Interruption
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhede, M.; Kragh, K.N.; Qvortrup, K.; Allesen-Holm, M.; van Gennip, M.; Christensen, L.D.; Jensen, P.Ø.; Nielsen, A.K.; Parsek, M.; Wozniak, D.; et al. Phenotypes of Non-Attached Pseudomonas Aeruginosa Aggregates Resemble Surface Attached Biofilm. PLoS ONE 2011, 6, e27943. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Jensen, P.Ø.; Fiandaca, M.J.; Pedersen, J.; Hansen, C.R.; Andersen, C.B.; Pressler, T.; Givskov, M.; Høiby, N. Pseudomonas aeruginosa Biofilms in the Respiratory Tract of Cystic Fibrosis Patients: Pseudomonas aeruginosa Biofilms in the Cystic Fibrosis Lung. Pediatr. Pulmonol. 2009, 44, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Whitchurch, C.B.; Tolker-Nielsen, T.; Ragas, P.C.; Mattick, J.S. Extracellular DNA Required for Bacterial Biofilm Formation. Science 2002, 295, 1487. [Google Scholar] [CrossRef] [PubMed]
- Wingender, J.; Strathmann, M.; Rode, A.; Leis, A.; Flemming, H.C. Isolation and Biochemical Characterization of Extracellular Polymeric Substances from Pseudomonas Aeruginosa. Methods Enzymol. 2001, 336, 302–314. [Google Scholar] [CrossRef]
- Haaber, J.; Cohn, M.T.; Frees, D.; Andersen, T.J.; Ingmer, H. Planktonic Aggregates of Staphylococcus Aureus Protect against Common Antibiotics. PLoS ONE 2012, 7, e41075. [Google Scholar] [CrossRef]
- Chmielewski, R.A.N.; Frank, J.F. Biofilm Formation and Control in Food Processing Facilities. Compr. Rev. Food Sci. Food Saf. 2003, 2, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Singh, D.; Avadhanula, M.; Marka, S. Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Compr. Rev. Food Sci. Food Saf. 2014, 13, 18–33. [Google Scholar] [CrossRef]
- Marchand, S.; Block, J.D.; Jonghe, V.D.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Mollea, C.; Marmo, L.; Bosco, F. Valorisation of Cheese Whey, a By-Product from the Dairy Industry; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef] [Green Version]
- Flint, S.; Bremer, P.; Brooks, J.; Palmer, J.; Sadiq, F.A.; Seale, B.; Teh, K.H.; Wu, S.; Md Zain, S.N. Bacterial Fouling in Dairy Processing. Int. Dairy J. 2020, 101, 104593. [Google Scholar] [CrossRef]
- Anand, S.; Verma, P. Chapter 24—The Emergence of Predominance in the Constitutive Microflora of Dairy Membrane Biofilms. In Understanding Microbial Biofilms; Das, S., Kungwani, N.A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 415–425. [Google Scholar] [CrossRef]
- Florjanič, M.; Kristl, J. The Control of Biofilm Formation by Hydrodynamics of Purified Water in Industrial Distribution System. Int. J. Pharm. 2011, 405, 16–22. [Google Scholar] [CrossRef]
- D’Souza, N.M.; Mawson, A.J. Membrane Cleaning in the Dairy Industry: A Review. Crit. Rev. Food Sci. Nutr. 2005, 45, 125–134. [Google Scholar] [CrossRef]
- Marka, S.; Anand, S. Feed Substrates Influence Biofilm Formation on Reverse Osmosis Membranes and Their Cleaning Efficiency. J. Dairy Sci. 2018, 101, 84–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, B.J.; Jing, Y.; Chen, X.D. Membrane Fouling during Filtration of Milk—A Microstructural Study. J. Food Eng. 2003, 60, 431–437. [Google Scholar] [CrossRef]
- Avadhanula, M. Formation of Bacterial Biofilms on Spiral Wound Reverse Osmosis Whey Concentration Membranes. In Electronic Theses and Dissertations; South Dakota State University: Brookings, SD, USA, 2011. [Google Scholar]
- Tang, X.; Flint, S.; Bennett, R.; Brooks, J.; Zain, S.N.M. Biofilm Contamination of Ultrafiltration and Reverse Osmosis Plants. In Biofilms in the Dairy Industry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 138–153. [Google Scholar] [CrossRef]
- Friedrich, U.; Lenke, J. Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real-Time PCR and Flow Cytometry-Fluorescence in Situ Hybridization. Appl. Environ. Microbiol. 2006, 72, 4163–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridgway, H.F.; Kelly, A.; Justice, C.; Olson, B.H. Microbial Fouling of Reverse-Osmosis Membranes Used in Advanced Wastewater Treatment Technology: Chemical, Bacteriological, and Ultrastructural Analyses. Appl. Environ. Microbiol. 1983, 45, 1066–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Flint, S.H.; Brooks, J.D.; Bennett, R.J. Factors Affecting the Attachment of Micro-Organisms Isolated from Ultrafiltration and Reverse Osmosis Membranes in Dairy Processing Plants. J. Appl. Microbiol. 2009, 107, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Anand, S.K. Biofilms Evaluation as an Essential Component of HACCP for Food/Dairy Processing Industry—A Case. Food Control 2002, 13, 469–477. [Google Scholar] [CrossRef]
- Hassan, A.N.; Anand, S.; Avadhanula, M. Microscopic Observation of Multispecies Biofilm of Various Structures on Whey Concentration Membranes. J. Dairy Sci. 2010, 93, 2321–2329. [Google Scholar] [CrossRef]
- Stewart, P.S.; William Costerton, J. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Sauer, K.; Camper, A.K.; Ehrlich, G.D.; Costerton, J.W.; Davies, D.G. Pseudomonas Aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. J. Bacteriol. 2002, 184, 1140–1154. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zhu, X. Biofilm Formation and Food Safety in Food Industries. Trends Food Sci. Technol. 2009, 20, 407–413. [Google Scholar] [CrossRef]
- Asad, S.; Opal, S.M. Bench-to-Bedside Review: Quorum Sensing and the Role of Cell-to-Cell Communication during Invasive Bacterial Infection. Crit. Care 2008, 12, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Characklis, W.G. Biofouling: Effects and Control. In Biofouling and Biocorrosion in Industrial Water Systems; Flemming, H.-C., Geesey, G.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 7–27. [Google Scholar] [CrossRef]
- Marshall, K.C.; Blainey, B.L. Role of Bacterial Adhesion in Biofilm Formation and Biocorrosion. In Biofouling and Biocorrosion in Industrial Water Systems; Flemming, H.-C., Geesey, G.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 29–46. [Google Scholar] [CrossRef]
- Drenkard, E. Antimicrobial Resistance of Pseudomonas Aeruginosa Biofilms. Microbes Infect. 2003, 5, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Austin, J.W.; Bergeron, G. Development of Bacterial Biofilms in Dairy Processing Lines. J. Dairy Res. 1995, 62, 509–519. [Google Scholar] [CrossRef]
- Czechowski, M.H.; Banner, M. Control of Biofilms in Breweries through Cleaning and Sanitizing. Tech. Q.-Master Brew. Assoc. Am. 1992, 29, 86–88. [Google Scholar]
- Dunsmore, D.G. Bacteriological Control of Food Equipment Surfaces by Cleaning Systems. I. Detergent Effects. J. Food Prot. 1981, 44, 15–20. [Google Scholar] [CrossRef]
- Mattila, T.; Manninen, M.; Kyläsiurola, A.-L. Effect of Cleaning-in-Place Disinfectants on Wild Bacterial Strains Isolated from a Milking Line. J. Dairy Res. 1990, 57, 33–39. [Google Scholar] [CrossRef]
- Maxcy, R.B. Residual Microorganisms in Cleaned-in-Place Systems for Handling Milk. J. Food Protl. 1969, 32, 140–143. [Google Scholar] [CrossRef]
- Simoes, M.; Simoes, L.C.; Vieira, M.J. A Review of Current and Emergent Biofilm Control Strategies. LWT-Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Wiley. Membrane Processing: Dairy and Beverage Applications. Wiley.com. Available online: https://www.wiley.com/en-us/Membrane+Processing%3A+Dairy+and+Beverage+Applications-p-9781118457023 (accessed on 19 May 2023).
- Thurman, E.M. Organic Geochemistry of Natural Waters; Kluwer Academic Publishers Group: Hingam, MA, USA, 1985. [Google Scholar]
- Liikanen, A.; Murtoniemi, T.; Tanskanen, H.; Väisänen, T.; Martikainen, P.J. Effects of Temperature and Oxygenavailability on Greenhouse Gas and Nutrient Dynamics in Sediment of a Eutrophic Mid-Boreal Lake. Biogeochemistry 2002, 59, 269–286. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and Physical Aspects of Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes. J. Membr. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sutherland, I.W. Polysaccharide Lyases. FEMS Microbiol. Rev. 1995, 16, 323–347. [Google Scholar] [CrossRef]
- Tauran, Y.; Kumemura, M.; Tarhan, M.C.; Perret, G.; Perret, F.; Jalabert, L.; Collard, D.; Fujita, H.; Coleman, A.W. Direct Measurement of the Mechanical Properties of a Chromatin Analog and the Epigenetic Effects of Para-Sulphonato-Calix[4]Arene. Sci. Rep. 2019, 9, 5816. [Google Scholar] [CrossRef] [Green Version]
- Suwarno, S.R.; Chen, X.; Chong, T.H.; Puspitasari, V.L.; McDougald, D.; Cohen, Y.; Rice, S.A.; Fane, A.G. The Impact of Flux and Spacers on Biofilm Development on Reverse Osmosis Membranes. J. Membr. Sci. 2012, 405–406, 219–232. [Google Scholar] [CrossRef]
- Anand, S.; Hassan, A.; Avadhanula, M. The Effects of Biofilms Formed on Whey Reverse Osmosis Membranes on the Microbial Quality of the Concentrated Product. Int. J. Dairy Technol. 2012, 65, 451–455. [Google Scholar] [CrossRef]
- Anand, S.; Singh, D. Resistance of the Constitutive Microflora of Biofilms Formed on Whey Reverse-Osmosis Membranes to Individual Cleaning Steps of a Typical Clean-in-Place Protocol. J. Dairy Sci. 2013, 96, 6213–6222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadell, C.D.; Drescher, K.; Foster, K.R. Spatial Structure, Cooperation and Competition in Biofilms. Nat. Rev. Microbiol. 2016, 14, 589–600. [Google Scholar] [CrossRef]
- Verma, P.; Singh, N.; Anand, S. Short Communication: A Competitive Exclusion Study Reveals the Emergence of Bacillus Subtilis as a Predominant Constitutive Microorganism of a Whey Reverse Osmosis Membrane Biofilm Matrix. J. Dairy Sci. 2021, 104, 221–227. [Google Scholar] [CrossRef]
- Verma, P.; Anand, S. Antimicrobial Activity as a Potential Factor Influencing the Predominance of Bacillus Subtilis within the Constitutive Microflora of a Whey Reverse Osmosis Membrane Biofilm. J. Dairy Sci. 2020, 103, 9992–10000. [Google Scholar] [CrossRef] [PubMed]
- Cornforth, D.M.; Foster, K.R. Competition Sensing: The Social Side of Bacterial Stress Responses. Nat. Rev. Microbiol. 2013, 11, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Tamime, A.Y. Cleaning-in-Place: Dairy, Food and Beverage Operations; Society of Dairy Technology Series; John Wiley & Sons: Ames, IA, USA, 2009; Available online: https://library.deakin.edu.au/record=b4035631~S1 (accessed on 19 May 2023).
- Zeman, L.J.; Zydney, A.L. Microfiltration and Ultrafiltration: Principles and Applications; CRC Press: Ames, IA, USA, 2017. [Google Scholar] [CrossRef]
- Garrett, T.; Bhakoo, M.; Zhang, Z. Bacterial Adhesion and Biofilms on Surface. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Coolbear, T.; Monk, C.; Peek, K.; Morgan, H.W.; Daniel, R.M. Laboratory-Scale Investigations into the Use of Extremely Thermophilic Proteinases for Cleaning Ultrafiltration Membranes Fouled during Whey Processing. J. Membr. Sci. 1992, 67, 93–101. [Google Scholar] [CrossRef]
- Whittaker, C.; Ridgway, H.; Olson, B.H. Evaluation of Cleaning Strategies for Removal of Biofilms from Reverse-Osmosis Membranes. Appl. Environ. Microbiol. 1984, 48, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farone, W.; Cahn, A. Effect of Enzymes on the Performance of Detergent Formulations. Dev. Ind. Microbiol. 1970, 12, 42–47. [Google Scholar]
- Maartens, A.; Swart, P.; Jacobs, E. An Enzymatic Approach to the Cleaning of Ultrafiltration Membranes Fouled in Abattoir Effluent. J. Membr. Sci. 1996, 119, 9–16. [Google Scholar] [CrossRef]
- Bockelmann, U.; Szewzyk, U.; Grohmann, E. A New Enzymatic Method for the Detachment of Particle-Associated Soil Bacteria. J. Microbiol. Methods 2003, 55, 201–211. [Google Scholar] [CrossRef]
- Leroy, C.; Delbarre, C.; Ghillebaert, E.; Compere, C.; Combes, D. Effects of Commercial Enzymes on the Adhesion of a Marine Biofilm-Forming Bacterium. Biofouling 2007, 24, 11–22. [Google Scholar] [CrossRef]
- Nijland, R.; Hall, M.; Burgess, J. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase. PLoS ONE 2010, 5, e15668. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Fernandez, N.; Anand, S. Evaluating Enzyme Formulations for Biofilm Removal from Dairy Separation Membranes. J. Dairy Sci. 2017, 100 (Suppl. 2), 54. [Google Scholar]
- Zhang, Q.; Yan, Z.; Meng, Y.; Hong, X.; Shao, G.; Ma, J.; Cheng, X.; Liu, J.; Kang, J.; Fu, C. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Palffy, R.; Gardlík, R.; Behuliak, M.; Kadasi, L.; Turna, J.; Celec, P. On the Physiology and Pathophysiology of Antimicrobial Peptides. Mol. Med. 2009, 15, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, Y.; Zhai, Z.; Zhang, H.; Yang, C.; Tian, H.; Li, Z.; Feng, J.; Liu, H.; Hao, Y. Characterization and Application of an Anti-Listeria Bacteriocin Produced by Pediococcus pentosaceus 05-10 Isolated from Sichuan Pickle, a Traditionally Fermented Vegetable Product from China. Food Control 2009, 20, 1030–1035. [Google Scholar] [CrossRef]
- Paik, S.H.; Chakicherla, A.; Hansen, J.N. Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus Subtilis 168. J. Biol. Chem. 1998, 273, 23134–23142. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and Characterization of a Bacteriocin-like Compound (Lichenin) Produced Anaerobically by Bacillus licheniformis Isolated from Water Buffalo. J. Appl. Microbiol. 2001, 91, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Chehimi, S.; Pons, A.-M.; Sablé, S.; Hajlaoui, M.-R.; Limam, F. Mode of Action of Thuricin S, a New Class IId Bacteriocin from Bacillus Thuringiensis. Can. J. Microbiol. 2010, 56, 162–167. [Google Scholar] [CrossRef]
- Bizani, D.; Motta, A.S.; Morrissy, J.A.C.; Terra, R.M.S.; Souto, A.A.; Brandelli, A. Antibacterial Activity of Cerein 8A, a Bacteriocin-like Peptide Produced by Bacillus Cereus. Int. Microbiol. 2005, 8, 125–131. [Google Scholar]
- Sirtori, L.R.; Cladera-Olivera, F.; Lorenzini, D.M.; Tsai, S.-M.; Brandelli, A. Purification and Partial Characterization of an Antimicrobial Peptide Produced by Bacillus sp. Strain P45, a Bacterium from the Amazon Basin Fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 2006, 52, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babasaki, K.; Takao, T.; Shimonishi, Y.; Kurahashi, K. Subtilosin A, a New Antibiotic Peptide Produced by Bacillus Subtilis 168: Isolation, Structural Analysis, and Biogenesis. J. Biochem. 1985, 98, 585–603. [Google Scholar] [CrossRef]
- Riley, M.A.; Wertz, J.E. Bacteriocin Diversity: Ecological and Evolutionary Perspectives. Biochimie 2002, 84, 357–364. [Google Scholar] [CrossRef]
- Sutyak, K.E.; Wirawan, R.E.; Aroutcheva, A.A.; Chikindas, M.L. Isolation of the Bacillus Subtilis Antimicrobial Peptide Subtilosin from the Dairy Product-Derived Bacillus Amyloliquefaciens. J. Appl. Microbiol. 2008, 104, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, C.M.; Bassler, B.L. QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remy, B.; Mion, S.; Plener, L.; Elias, M.; Chabrière, E.; Daudé, D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018, 9, 203. [Google Scholar] [CrossRef]
- Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-Mediated Signalling in Bacteria. FEMS Microbiol. Rev. 2013, 37, 156–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmati, F.; Salehi, R.; Ghotaslou, R.; Kafil, H.S.; Hasani, A.; Gholizadeh, P.; Nouri, R.; Rezaee, M.A. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. IDR 2020, 13, 2989–3005. [Google Scholar] [CrossRef]
- Bai, A.; Rai, V. Bacterial Quorum Sensing and the Food Industry. Compr. Rev. Food Sci. Food Saf. 2011, 10, 183–193. [Google Scholar] [CrossRef]
- Rivas, M.; Seeger, M.; Jedlicki, E.; Holmes, D.S. Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 2007, 73, 3225–3231. [Google Scholar] [CrossRef] [Green Version]
- von Bodman, S.B.; Majerczak, D.R.; Coplin, D.L. A Negative Regulator Mediates Quorum-Sensing Control of Exopolysaccharide Production in Pantoea Stewartii Subsp. Stewartii. Proc. Natl. Acad. Sci. USA 1998, 95, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Manefield, M.; Rasmussen, T.B.; Henzter, M.; Andersen, J.B.; Steinberg, P.; Kjelleberg, S.; Givskov, M. Halogenated Furanones Inhibit Quorum Sensing through Accelerated LuxR Turnover. Microbiology 2002, 148, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.-H.; Zhang, L.-H. Quorum Sensing and Quorum-Quenching Enzymes. J. Microbiol. 2005, 43, 101–109. [Google Scholar]
- Kim, N.-N.; Kim, W.J.; Kang, S.-S. Anti-Biofilm Effect of Crude Bacteriocin Derived from Lactobacillus Brevis DF01 on Escherichia Coli and Salmonella Typhimurium. Food Control 2019, 98, 274–280. [Google Scholar] [CrossRef]
Step Number | CIP Steps in Sequence | Temperature (°C) | Target pH Range | Time Duration (min) |
---|---|---|---|---|
1 | Alkali rinse | 50 | 11.0–11.5 | 12 |
2 | Surfactant 1 | 50 | 11.0–11.5 | 30 |
3 | Acid | 50 | 1.9–2.3 | 30 |
4 | Enzyme | 50 | 10.5–11.0 | 45 |
5 | Surfactant 2 | 50 | 11.0–11.5 | 10 |
6 | Sanitizer | 21.1 | 3.0–4.0 | 1 |
Age of Used RO Membranes (Months) | Biofilm Microflora | Reference/Source |
---|---|---|
2 | Staphylococcus sp. Micrococcus sp. Enterococcus sp. Pseudomonas sp. Lactobacillus sp. | [46] |
6 | Aeromonas sp. Bacillus sp. Enterococcus sp. | [22] |
8 | Staphylococcus sp. Bacillus sp. Escherichia coli Campylobacter sp. | [16] |
12 | Lactobacillus sp. Lactococcus sp. Coliform Pseudomonas sp. Staphylococcus sp. | [22] |
14 | Escherichia coli Enterococcus sp. Staphylococcus sp. Klebsiella sp. | [46] |
18 | Exiguobacterium sp. Acinetobacter sp. Bacillus licheniformis Bacillus sp. | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, S.; Anand, S. Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials. Membranes 2023, 13, 579. https://doi.org/10.3390/membranes13060579
Jha S, Anand S. Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials. Membranes. 2023; 13(6):579. https://doi.org/10.3390/membranes13060579
Chicago/Turabian StyleJha, Sheetal, and Sanjeev Anand. 2023. "Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials" Membranes 13, no. 6: 579. https://doi.org/10.3390/membranes13060579
APA StyleJha, S., & Anand, S. (2023). Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials. Membranes, 13(6), 579. https://doi.org/10.3390/membranes13060579