Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PSf/Ag-GO Membranes
2.3. Characterization of Membrane and Performance Test
3. Results and Discussion
3.1. Properties of PSf/Ag-GO Membranes
3.2. Properties of Composite PSf-GO Membranes
3.3. FESEM Images and EDX Mapping
3.4. Salt Rejection
3.5. Iron Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rusydi, A.F.; Onodera, S.I.; Saito, M.; Ioka, S.; Maria, R.; Ridwansyah, I.; Delinom, R.M. Vulnerability of Groundwater to Iron and Manganese Contamination in the Coastal Alluvial Plain of a Developing Indonesian City. SN Appl. Sci. 2021, 3, 399. [Google Scholar] [CrossRef]
- Renge, V.C.; Khedkar, S.V.; Pande, S.V. Removal of Heavy Metals from Wastewater Using Low Cost Adsorbents: A Review. Sci. Rev. Chem. Commun. J. 2012, 2, 580–584. [Google Scholar]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of Heavy Metals in Wastewater and Soil Samples from Open Drainage Channels in Nairobi, Kenya: Community Health Implication. Sci. Rep. 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Heavy Metals as Essential Nutrients. In Heavy Metal Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2004; pp. 271–294. [Google Scholar] [CrossRef]
- Usman, U.A.; Yusoff, I.; Raoov, M.; Alias, Y.; Hodgkinson, J.; Abdullah, N.; Hussin, N.H. Natural Sources of Iron and Manganese in Groundwater of the Lower Kelantan River Basin, North-Eastern Coast of Peninsula Malaysia: Water Quality Assessment and an Adsorption-Based Method for Remediation. Environ. Earth Sci. 2021, 80, 425. [Google Scholar] [CrossRef]
- Khozyem, H.; Hamdan, A.; Tantawy, A.A.; Emam, A.; Elbadry, E. Distribution and Origin of Iron and Manganese in Groundwater: Case Study, Balat-Teneida Area, El-Dakhla Basin, Egypt. Arab. J. Geosci. 2019, 12, 448. [Google Scholar] [CrossRef]
- Dvorak, B.I.; Schuerman, B. Drinking Water: Iron and Manganese. Nebguide 2014, 1714. [Google Scholar]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.; Tchobanoglous, G. Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yasin, H.; Mousa, H.M.; Abd El-Sadek, M.S.; Abdel-Jaber, G.T. Membrane Technology for Groundwater Purification: A Review. SVU Int. J. Eng. Sci. Appl. 2020, 1, 8–21. [Google Scholar] [CrossRef]
- Kheirieh, S.; Asghari, M.; Afsari, M. Application and Modification of Polysulfone Membranes. Rev. Chem. Eng. 2018, 34, 657–693. [Google Scholar] [CrossRef]
- Dong, L.X.; Huang, X.C.; Wang, Z.; Yang, Z.; Wang, X.M.; Tang, C.Y. A Thin-Film Nanocomposite Nanofiltration Membrane Prepared on a Support with In Situ Embedded Zeolite Nanoparticles. Sep. Purif. Technol. 2016, 166, 230–239. [Google Scholar] [CrossRef]
- Changani, Z.; Razmjou, A.; Taheri-Kafrani, A.; Warkiani, M.E.; Asadnia, M. Surface Modification of Polypropylene Membrane for the Removal of Iodine Using Polydopamine Chemistry. Chemosphere 2020, 249, 126079. [Google Scholar] [CrossRef]
- Fang, L.F.; Zhou, M.Y.; Cheng, L.; Zhu, B.K.; Matsuyama, H.; Zhao, S. Positively Charged Nanofiltration Membrane Based on Cross-Linked Polyvinyl Chloride Copolymer. J. Memb. Sci. 2019, 572, 28–37. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Zhang, H.; Luo, J.; Woodley, J.M.; Wan, Y. Targeted Modification of Polyamide Nanofiltration Membrane for Efficient Separation of Monosaccharides and Monovalent Salt. J. Memb. Sci. 2021, 628, 119250. [Google Scholar] [CrossRef]
- Hong Anh Ngo, T.; Dinh Do, K.; Thi Tran, D. Surface Modification of Polyamide TFC Membranes via Redox-Initiated Graft Polymerization of Acrylic Acid. J. Appl. Polym. Sci. 2017, 134, 45110. [Google Scholar] [CrossRef]
- Kasim, N.; Mohammad, A.W.; Abdullah, S.R.S. Iron and Manganese Removal by Nanofiltration and Ultrafiltration Membranes. Malays. J. Anal. Sci. 2017, 21, 149–158. [Google Scholar]
- Adib, H.; Raisi, A. Surface Modification of a PES Membrane by Corona Air Plasma-Assisted Grafting of HB-PEG for Separation of Oil-in-Water Emulsions. RSC Adv. 2020, 10, 17143–17153. [Google Scholar] [CrossRef]
- Shen, L.; Feng, S.; Li, J.; Chen, J.; Li, F.; Lin, H.; Yu, G. Surface Modification of Polyvinylidene Fluoride (PVDF) Membrane via Radiation Grafting: Novel Mechanisms Underlying the Interesting Enhanced Membrane Performance. Sci. Rep. 2017, 7, 2721. [Google Scholar] [CrossRef] [Green Version]
- Pendergast, M.M.; Hoek, E.M.V. A Review of Water Treatment Membrane Nanotechnologies. Energy Env. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.; Shaari, N.; Kamarudin, S.K.; Bahru, R.; Musa, M.T. A Review of Progressive Advanced Polymer Nanohybrid Membrane in Fuel Cell Application. Int. J. Energy Res. 2020, 44, 8255–8295. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent Development in Modification of Polysulfone Membrane for Water Treatment Application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.B.; Yu, L.Y.; Wei, Y.M.; Xu, Z.L. Structure and Properties of PSf Hollow Fiber Membranes with Different Molecular Weight Hyperbranched Polyester Using Pentaerythritol as Core. Polymers 2020, 12, 383. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chang, H.; Gao, S.; Zhang, R. How to Fabricate a Negatively Charged NF Membrane for Heavy Metal Removal via the Interfacial Polymerization between PIP and TMC? Desalination 2020, 491, 114499. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Ji, M.; Lu, Y.; Zhu, Y.; Jin, J. Polyamide Nanofiltration Membrane with High Mono/Divalent Salt Selectivity via Pre-Diffusion Interfacial Polymerization. J. Memb. Sci. 2021, 636, 119478. [Google Scholar] [CrossRef]
- Adamczak, M.; Kamińska, G.; Bohdziewicz, J. Preparation of Polymer Membranes by in Situ Interfacial Polymerization. Int. J. Polym. Sci. 2019, 2019, 6217924. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, H.; Liu, X.; Hu, X. Molecular Insight into Water Desalination across Multilayer Graphene Oxide Membranes. ACS Appl. Mater. Interfaces 2017, 9, 22826–22836. [Google Scholar] [CrossRef] [PubMed]
- Abu Seman, M.N.; Hilal, N.; Khayet, M. UV-Photografting Modification of NF Membrane Surface for NOM Wfouling Reduction. Desalination Water Treat. 2013, 51, 4855–4861. [Google Scholar] [CrossRef] [Green Version]
- Susanto, H.; Desiriani, R.; Prasetyo, A.A.; Hermita, D.; Istirokhatun, T.; Nyoman Widiasa, I. Incorporation of Nanoparticles as Antifouling Agents into PES UF Membrane. Mater. Today Proc. 2019, 13, 217–223. [Google Scholar] [CrossRef]
- Kasim, N.; Mahmoudi, E.; Mohammad, A.W.; Abdullah, S.R.S. Influence of Feed Concentration and PH on Iron and Manganese Rejection via Nanohybrid Polysulfone/Ag-GO Ultrafiltration Membrane. Desalination Water Treat. 2017, 61, 29–41. [Google Scholar] [CrossRef]
- Christian, P.; Von Der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology 2008, 17, 326–343. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Mohammad, A.W.; Takriff, M.S.; Rohani, R.; Mahmoudi, E.; Faneer, K.A.; Benamo, A. Synthesis of Iron Oxide Nanoparticles to Enhance Polysulfone Ultrafiltration Membrane Performance for Salt Rejection. Chem. Eng. Trans. 2017, 56, 1699–1704. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Mohammad, A.W.; Ba-Abbad, M.M.; Razzaz, Z. Enhancement of Polysulfone Membrane with Integrated ZnO Nanoparticles for the Clarification of Sweetwater. Int. J. Environ. Sci. Technol. 2018, 15, 561–570. [Google Scholar] [CrossRef]
- Parvizian, F.; Ansari, F.; Bandehali, S. Oleic Acid-Functionalized TiO2 Nanoparticles for Fabrication of PES-Based Nanofiltration Membranes. Chem. Eng. Res. Des. 2020, 156, 433–441. [Google Scholar] [CrossRef]
- Ponnaiyan, P.; Nammalvar, G. Enhanced Performance of PSF/PVP Polymer Membrane by Silver Incorporation. Polym. Bull. 2020, 77, 197–212. [Google Scholar] [CrossRef]
- Chai, P.V.; Law, J.Y.; Mahmoudi, E.; Mohammad, A.W. Development of Iron Oxide Decorated Graphene Oxide (Fe3O4/GO) PSf Mixed-Matrix Membrane for Enhanced Antifouling Behavior. J. Water Process Eng. 2020, 38, 101673. [Google Scholar] [CrossRef]
- Pendolino, F.; Armata, N. Remediation Process by Graphene Oxide. In Graphene Oxide in Environmental Remediation Process; Springer: Cham, Switzerland, 2017; pp. 35–50. [Google Scholar]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Cao, N.; Zhang, Y. Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. J. Nanomater. 2015, 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Ma, C.; Hu, J.; Sun, W.; Ma, Z.; Yang, W.; Wang, L.; Ran, Z.; Zhao, B.; Zhang, Z.; Zhang, H. Graphene Oxide-Polyethylene Glycol Incorporated PVDF Nanocomposite Ultrafiltration Membrane with Enhanced Hydrophilicity, Permeability, and Antifouling Performance. Chemosphere 2020, 253, 126649. [Google Scholar] [CrossRef]
- Liu, Y. Application of Graphene Oxide in Water Treatment. IOP Conf. Ser. Earth Env. Sci. 2017, 94, 012060. [Google Scholar] [CrossRef]
- Zhu, J.; Lua, A.C. Antibacterial Ultrafiltration Membrane with Silver Nanoparticle Impregnation by Interfacial Polymerization for Ballast Water. J. Polym. Sci. 2021, 59, 2295–2308. [Google Scholar] [CrossRef]
- Sprick, C.G. Functionalization of Silver Nanoparticles on Membranes and Its Influence on Biofouling. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2017. [Google Scholar]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R.; Mohammad, A.W. Enhancing Morphology and Separation Performance of Polyamide 6,6 Membranes by Minimal Incorporation of Silver Decorated Graphene Oxide Nanoparticles. Sci. Rep. 2019, 9, 1216. [Google Scholar] [CrossRef] [Green Version]
- Bouchareb, S.; Doufnoune, R.; Riahi, F.; Cherif-Silini, H.; Belbahri, L. High Performance of Polysulfone/Graphene Oxide-Silver Nanocomposites with Excellent Antibacterial Capability for Medical Applications. Mater. Today Commun. 2021, 27, 102297. [Google Scholar] [CrossRef]
- Mahmoudi, E. Silver Decorated Graphene Oxide Embedded Membranes for Enhanced Fouling and Biofouling Control Ebrahim. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2017. [Google Scholar]
- Mahdi, N.; Kumar, P.; Goswami, A.; Perdicakis, B.; Shankar, K.; Sadrzadeh, M. Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes for Water Treatment. Nanomaterials 2019, 9, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xu, Z.; Mai, W.; Min, C.; Zhou, B.; Shan, M.; Li, Y.; Yang, C.; Wang, Z.; Qian, X. Improved Hydrophilicity, Permeability, Antifouling and Mechanical Performance of PVDF Composite Ultrafiltration Membranes Tailored by Oxidized Low-Dimensional Carbon Nanomaterials. J. Mater. Chem. A 2013, 1, 3101–3111. [Google Scholar] [CrossRef]
- Rezaee, R.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Mousavi, S.A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and Characterization of a Polysulfone-Graphene Oxide Nanocomposite Membrane for Arsenate Rejection from Water. J. Environ. Health Sci. Eng. 2015, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates. J. Memb. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Chung, Y.T.; Mahmoudi, E.; Mohammad, A.W.; Benamor, A.; Johnson, D.; Hilal, N. Development of Polysulfone-Nanohybrid Membranes Using ZnO-GO Composite for Enhanced Antifouling and Antibacterial Control. Desalination 2017, 402, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Mataram, A.; Anisya, N.; Nadiyah, N.A.; Afriansyah, A. Fabrication Membrane of Titanium Dioxide (TiO2) Blended Polyethersulfone (Pes) and Polyvinilidene Fluoride (Pvdf): Characterization, Mechanical Properties and Water Treatment. Key Eng. Mater. 2020, 867, 159–165. [Google Scholar] [CrossRef]
- Badrinezhad, L.; Ghasemi, S.; Azizian-Kalandaragh, Y.; Nematollahzadeh, A. Preparation and Characterization of Polysulfone/Graphene Oxide Nanocomposite Membranes for the Separation of Methylene Blue from Water. Polym. Bull. 2018, 75, 469–484. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ba-Abbad, M.M.; Mohammad, A.W. Novel Nanohybrid Polysulfone Membrane Embedded with Silver Nanoparticles on Graphene Oxide Nanoplates. Chem. Eng. J. 2015, 277, 1–10. [Google Scholar] [CrossRef]
- Junaidi, N.F.D.; Khalil, N.A.; Jahari, A.F.; Shaari, N.Z.K.; Shahruddin, M.Z.; Alias, N.H.; Othman, N.H. Effect of Graphene Oxide (GO) on the Surface Morphology & Hydrophilicity of Polyethersulfone (PES). IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012047. [Google Scholar] [CrossRef]
- Bagheripour, E.; Moghadassi, A.; Hosseini, S.M. Preparation of Mixed Matrix PES-Based Nanofiltration Membrane Filled with PANI-Co-MWCNT Composite Nanoparticles. Korean J. Chem. Eng. 2016, 33, 1462–1471. [Google Scholar] [CrossRef]
- Seidel, A.; Waypa, J.J.; Elimelech, M. Role of Charge (Donnan) Exclusion in Removal of Arsenic from Water by a Negatively Charged Porous Nanofiltration Membrane. Environ. Eng. Sci. 2001, 18, 105–113. [Google Scholar] [CrossRef]
- Owusu-Agyeman, I.; Reinwald, M.; Jeihanipour, A.; Schäfer, A.I. Removal of Fluoride and Natural Organic Matter Removal from Natural Tropical Brackish Waters by Nanofiltration/Reverse Osmosis with Varying Water Chemistry. Chemosphere 2019, 217, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Zoubi, H.; Hilal, N.; Darwish, N.A.; Mohammad, A.W. Rejection and Modelling of Sulphate and Potassium Salts by Nanofiltration Membranes: Neural Network and Spiegler-Kedem Model. Desalination 2007, 206, 42–60. [Google Scholar] [CrossRef]
- Kaewsuk, J.; Lee, D.Y.; Lee, T.S.; Seo, G.T. Effect of Ion Composition on Nanofiltration Rejection for Desalination Pretreatment. Desalination Water Treat. 2012, 43, 260–266. [Google Scholar] [CrossRef]
Sample | PSf (wt%) | NMP (wt%) | Ag-GO (wt%) |
---|---|---|---|
M0 | 20 | 80 | 0 |
M1 | 20 | 80 | 0.3 |
M2 | 20 | 80 | 0.5 |
M3 | 20 | 80 | 0.8 |
NO | Assignment | FTIR Frequency of M0 (cm−1) | FTIR Frequency of M2 (cm−1) |
---|---|---|---|
1 | O-H stretching vibrations | 3380.84 | 3382.84 and 3380.84 |
2 | Aromatic C=C stretching | 1577.41 and 1485.46 | 1577.39 and 1485.43 |
3 | C=C | 1406.37 | 1406.20 |
4 | asymmetric O=S=O stretching of sulfone group | 1320.34 and 1297.21 | 1320.22 and 1297.15 |
5 | C-O-C | 1238.25 | 1237.94 |
6 | Symmetric O=S=O | 1147.95 | 1147.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Jamari, N.L.-A.; Mohamed Zuki, F. Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes. Membranes 2023, 13, 602. https://doi.org/10.3390/membranes13060602
Suhalim NS, Kasim N, Mahmoudi E, Shamsudin IJ, Jamari NL-A, Mohamed Zuki F. Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes. Membranes. 2023; 13(6):602. https://doi.org/10.3390/membranes13060602
Chicago/Turabian StyleSuhalim, Nur Syahirah, Norherdawati Kasim, Ebrahim Mahmoudi, Intan Juliana Shamsudin, Nor Laili-Azua Jamari, and Fathiah Mohamed Zuki. 2023. "Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes" Membranes 13, no. 6: 602. https://doi.org/10.3390/membranes13060602
APA StyleSuhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Jamari, N. L. -A., & Mohamed Zuki, F. (2023). Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes. Membranes, 13(6), 602. https://doi.org/10.3390/membranes13060602