Bio-Based Polymeric Membranes: Development and Environmental Applications
Abstract
:1. Introduction
2. Membrane Fabrication in an Environmentally Friendly Way
2.1. Bio-Based Polymer Selection
2.1.1. Naturally Obtained Biomass Polymers
Cellulose and Its Derivatives
Starch and Its Derivatives
Chitin and Its Derivative, Chitosan
Extracellular Polysaccharides from Microalgae
2.1.2. Bioengineered Polymers
PHAs
Bacterial Cellulose
Poly(glutamic acid)
2.1.3. New Metabolite Polymers from Biomass-Originated Monomers
PLA
Bio-PTT
Bio-Based Polymer | Chemical Structure | MW | References |
---|---|---|---|
Cellulose | D-anhydroglucopyranose units linked by glycosidic β-(1–4). | (g/mol) | [58] |
Starch | Composed of amylose (D-glucose units linked by α (1–4) bonds) and amylopectin (D-glucose units linked by α (1–4) bonds and about 5% linked by α (1–6) bonds). | Amylose , Amylopectin 50–500 × 106 (g/mol) | [16] |
Chitin | N-acetyl-2-amido-2-deoxy-D-glucose units linked by β-(1–4) bonds | HMW: >1300 kDa | [59] |
Sulfated polysaccharide from Porphyridium | A possible acidic building unit: [(2 or 4)-β-D-Xylp-(1–3)]m–α-D-Glcp-(1–3)-α-D-GlcpA-(1–3)-L-Galp(1– | 2.39 × 105 (g/mol) | [60] |
Polyhydroxyalkanoates | 3-hydroxybutyrate and/or 3-hydroxyvalerate monomers. | 100–450 kDa | [61] |
Poly(glutamic acid) | L-glutamic acid and D-glutamic acid are connected though amide linkages between α-amino and γ-carboxylic acid groups. | 105–8 × 106 (g/mol) | [48] |
Polylactic acid | Monomer acid lactic, an enantiomeric molecule, where exists L- or (S)-, and D- or (R)-enantiomers. | 183–217 kDa | [62] |
Poly(trimethylene terephthalate) | Transesterification process using it and dimethyl terephthalate or via direct esterification using terephthalic acid. | 117,000 g/mol | [63] |
Poly(butylene succinate) | Repeating units of butylene succinate. | >65,000 g/mol | [64] |
Polyamides (Nylon 6) | Repeating amide monomer units. | 107,000 g/mol | [65] |
Bio-polyethylene | Ethylene (C2H4) monomers. | >200,000 g/mol | [66] |
Bio-polypropylene | Propylene (C3H6) monomers. | 182,000–373,000 g/mol | [67] |
PBS
Polyamides (Nylon)
2.1.4. Conventional Petrochemical Polymers from Bio-Derived Substances
Bio-PE
Bio-PP
Bio-PET
2.2. Characteristics, Properties and Applications of Bio-Based Polymeric Membranes
Bio-Based Polymer | Membrane Characteristics and Properties | Applications | References |
---|---|---|---|
Cellulose and its derivatives | Salt rejection from 93.2% to 97.8%. | Water desalination. | [83] |
Hydrophilic, available in different pore sizes, flexibility, and associated with large filter surface area. | Virus removal capacity. | [84] | |
High permeation flux, excellent separation efficiency, good flux recovery ratio. Recyclability potential and antifouling performance compared to existing commercial membranes. | Wastewater treatment. | [85] | |
Water permeability of 188.0 L/m2h and rejection ratio of 95.2% of albumin bovine serum can be obtained with optimized conditions. | Water purification. | [86] | |
Chitin | Membrane with thermal stability and with good growth of NIH/3T3 fibroblast cells. | Biomaterial for tissue engineering. | [87] |
Flexible, highly porous, stable, and used as a support membrane for the growth of two mammalian cell types: NIH 3T3 and HEK293T. | Wound dressing material for tissue engineering and drug delivery. | [88] | |
Membrane that can support cell attachment, proliferation, and migration also showed an excellent tensile strength of 105.7 ± 29.9 MPa. | Wound healing. | [89] | |
Chitosan and its derivatives | Membranes with thermal stability, and CO2 permeance from 15.2 to 44 GPU, and CO2/N2 selectivity from 42 to 260%. | Gas separation (CO2). | [90] |
PHAs | Membrane of rugged structures with pores among the surface and in the cross-section. Performance of pure water permeability over 200 L/m2h bar and E. coli rejection of 99.95%. | Microfiltration, and as a biomaterial. | [91] |
Bacterial cellulose | Drug-loaded membranes were flexible and with considerably higher swelling behavior. | Transdermal delivery systems for anti-inflammatory drugs. | [92] |
PLA | Asymmetric membrane with albumin from bovine serum removal of 89–92%. | Wastewater treatment. | [93] |
Membranes with capacity of 52% removal rates of phosphates (PO4−3-P), and until 95.9 ± 3.1% of ammonium nitrogen (NH4+-N). | [93] |
2.3. Preparation Methods of Bio-Based Polymeric Membranes
Bio-Based Polymer | Preparation Method | Type of Membrane | Observations | References |
---|---|---|---|---|
CAB | Thermally-induced phase separation (TIPS). | Hollow fiber | The roughness of thermally induced phase separation membranes was superior to the nonsolvent-induced phase separation membranes. | [104] |
Nonsolvent-induced phase separation (NIPS). | ||||
Cellulose | Electrospinning | Thin film | The parameters optimized were a voltage of 35 kV, a tip-to-collector distance of 15 cm, and a spinning rate of 1.0 mL/h. | [105] |
PLA | Phase separation | Hollow fiber | Microporous structure, high water permeability (324 ± 46 L/m2 h atm) and good separation performance as an ultrafiltration membrane (80% BSA rejection). | [106] |
Evaporation-induced phase separation (EIPS) | Symmetric dense flat | Membranes possess a Tg of around 65 °C. Thickness > 25 µm showed high CO2/CH4 ideal selectivity (220–230) and CO2 permeability ~11 Barrer. | [107] | |
Lignocellulosic acetylated | Evaporation-precipitation | Thin film | Nano-porous membrane with 169.27 nm of total roughness. Good operational performance of nanofiltration (98.47% of fluoride rejection). | [108] |
Bio-polyamide 56 (PA56) | Electrospinning | Nanofiber | PA56 attached with alginate and poly-(hexamethylene biguanide) showed antibacterial activity against Escherichia coli (97%) and Pseudomonas putida (100%). | [109] |
Poly(hydroxybutyrate-co-hydroxyvalerate) | Phase inversion | Asymmetric | The membrane is permeable to water up to 350 L m−2h−1bar with a pore size in the range of UF/MF. | [110] |
Evaporation-induced phase separation | Porous | Rugged structure with pores among the surface and in the cross-section. 18.0 ± 0.6 µm of membrane thickness, 9.0 ± 0.5% of porosity, 4.2 ± 2.6 L m−2h−1bar−1 of water permeability, and 95.0 ±2.80% of E. coli rejection. | [91] | |
Acetylated cellulose ether | Solvent evaporation | Dense thin-film | Water uptake of around 11–12 wt%. The pore diameter of 0.58–0.62 nm. Low water permeability (~10−7 cm2/sec). | [111] |
Phase inversion | Microporous asymmetric | Membrane characteristics such as a thicker, dense top layer, hindered macrovoid formation, and lower porosities depend on polymer concentrations. | ||
Extracellular biopolymer from microalgae | Solvent evaporation | Thin film | Transparent and flexible biofilms with pores and cracks. | [28] |
PBS | Electrospinning and oxygen plasma treatment | Nanofibrous | Super hydrophilic membranes. | [112] |
Synthetic Polymer | Preparation Method | Type of Membrane | Observations | References |
---|---|---|---|---|
Poly(vinylidene fluoride) (PVDF) | Melt-spinning and stretching process | Hollow fiber | The membranes exhibited excellent tensile strength in the 23.0 to 62.6 MPa range. Membranes prepared with stretching 100% were about 0.317 µm, which showed a high dye rejection (<93.9%) for direct black 19. | [113] |
Polyamide-PVDF | High-temperature rapid non-solvent-induced phase separation | Hollow fiber with bicontinuous structure | The results showed that the stock solution must not have a gelation temperature, and the membrane produced at an outer coagulation solution temperature higher than the upper critical solution temperature of the stock solution. | [114] |
Polyimide | Electrospinning combined with surface modification | Fibrous membrane | Membranes were modified with fumed silica and 1H, 1H, 2H, and 2H-perfluorooctyl trichlorosilane (PFTS). The membranes showed ultra-high oil-water separation performance. The flux of heavy oil can reach 271.36 L/m2h under 25 KPa. | [103] |
Polyestirene integrated with natural zeolite particles | Electrospinning | Fiber | The membrane showed a smooth surface with microdomains. The product integrated with 30 wt% zeolites had the best performance in the desalination of artificial seawater, 82.63% decrease in conductivity. | [115] |
Nanocomposite polyamide 6 with intercalated silicate sheets | Thermally-induced phase separation (TIPS) | Hollow fiber | The membrane, whose composition was 50% nanocomposite, exhibited methanol permeance of 0.1 L/m2 h bar and vitamin B12 rejection of over 99.0%. | [116] |
Polysulfone | Phase inversion process | Asymmetric porous | The membranes showed pure water flux of 118.5 to 695.65 L/m2 h at 240 kPa, porosity of 0.38 to 0.61, and bovine serum albumin rejection of 40% to 64.52% at pH 9.3. | [117] |
Polysulfone/Cellulose nanofibers | Phase inversion | The membranes reinforced with cellulose nanofibers at less than 0.5wt% was the best homogeneous dispersed. This prepared membrane showed 3.2 nm of average pore size. | [118] | |
Polysulfone | Non-solvent coagulation bath-induced phase inversion | The optimum membrane was founded when the immersion was at 1% Na2SO4. This membrane achieved a high permeation of water flux, it was 208.75 L/m2 h, and the highest rejection of humic acid, it was 99.54%. | [119] | |
Polyethersulfone | Non-solvent-induced phase separation | Hollow fiber | It was observed that the addition of o-xylene as an additive to the cast solution reduces water permeability and membrane pore size and increases membrane strength and water contact angle. | [120] |
2.4. The Utility of the Additives in the Preparation of Bio-Based Polymeric Membranes
2.5. Green Solvents as a Sustainable Approach in the Preparation of Bio-Based Polymeric Membranes
2.6. Characterization of Bio-Based Polymeric Membranes
3. Environmental Applications of Bio-Based Polymeric Membranes
4. Membrane Fouling as a Bottleneck on Membrane Technology
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, Z.F.; Jiang, Y.; Field, R.W. Chapter 1—Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–18. [Google Scholar] [CrossRef]
- Yadav, P.; Ismail, N.; Essalhi, M.; Tysklind, M. Assessment of the environmental impact of polymeric membrane production. J. Membr. Sci. 2021, 622, 118987. [Google Scholar] [CrossRef]
- Jaafar, J.; Nasir, A.M. Grand Challenge in Membrane Fabrication: Membrane Science and Technology. Front. Membr. Sci. Technol. 2022, 1, 883913. [Google Scholar] [CrossRef]
- Morales-Jiménez, M.; Yáñez-Fernández, J.; Castro-Muñoz, R.; Barragán-Huerta, B.E. Recovery of High Added Value Compounds from Microalgae Cultivation Using Membrane Technology. In Membrane Separation of Food Bioactive Ingredients; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-84643-5. [Google Scholar]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew: Norwich, NY, USA, 2014; ISBN 9780323279383. [Google Scholar]
- Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable polymers and plastics: Performance beyond the green. N. Biotechnol. 2021, 60, 146–158. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.M.; Islam, K.N.; Sobuz, M.H.R. Biodegradable and Bio-Based Environmentally Friendly Polymers. In Encyclopedia of Materials: Plastics and Polymers; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 820–836. [Google Scholar] [CrossRef]
- Bandehali, S.; Sanaeepur, H.; Ebadi Amooghin, A.; Shirazian, S.; Ramakrishna, S. Biodegradable polymers for membrane separation. Sep. Purif. Technol. 2021, 269, 118731. [Google Scholar] [CrossRef]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. Introduction to Membranes. In Stimuli Responsive Polymeric Membranes: Smart Polymeric Membranes; Academic Press: Cambridge, MA, USA, 2018; Volume 25, ISBN 9780128139615. [Google Scholar]
- Muralidhara, H.S. Chapter 2—Challenges of Membrane Technology in the XXI Century. In Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing; Butterworth-Heinemann: Oxford, UK, 2010; pp. 19–32. [Google Scholar] [CrossRef]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A.; Yousefpoor, M. Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J. Ind. Eng. Chem. 2022, 109, 100–124. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Galiano, F. 2—Polymeric membranes in biorefinery. In Membrane Technologies for Biorefining; Woodhead Publishing: Sawston, UK, 2016; ISBN 9780081004517. [Google Scholar]
- Rånby, B.; Rambo, C.R. Natural Cellulose Fibers and Membranes: Biosynthesis. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Wondraczek, H.; Heinze, T. Cellulosic Biomaterials BT—Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Cham, Switzerland, 2015; pp. 289–328. ISBN 978-3-319-16298-0. [Google Scholar]
- Averous, L.; Halley, P.J. Chapter 1—Starch Polymers: From the Field to Industrial Products. In Starch Polymers: From Genetic Engineering to Green Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–10. [Google Scholar] [CrossRef]
- Tan, I.; Halley, P.J. “Structure-Property” Relationships of Genetically Modified Starch; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444537300. [Google Scholar]
- Zhao, B.; Li, L.; Lv, X.; Du, J.; Gu, Z. Progress and prospects of modified starch-based carriers in anticancer drug delivery. J. Control. Release 2022, 349, 662–678. [Google Scholar] [CrossRef]
- Shokri, Z.; Seidi, F.; Reza, M.; Jin, Y.; Li, C.; Xiao, H. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review. Mater. Today Chem. 2022, 24, 100780. [Google Scholar] [CrossRef]
- Ngasotter, S.; Sampath, L.; Xavier, K.A.M. Nanochitin: An updated review on advances in preparation methods and food applications. Carbohydr. Polym. 2022, 291, 119627. [Google Scholar] [CrossRef]
- Khajavian, M.; Vatanpour, V.; Castro-Muñoz, R.; Boczkaj, G. Chitin and derivative chitosan-based structures—Preparation strategies aided by deep eutectic solvents: A review. Carbohydr. Polym. 2022, 275, 118702. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Lv, X.; Ma, M.; Oh, D.; Jiang, Z.; Fu, X. Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr. Polym. 2023, 299, 120142. [Google Scholar] [CrossRef]
- Dong, Q.; Qiu, W.; Li, L.; Tao, N.; Liang Wang, A.; Deng, S.; Jin, Y. Extraction of Chitin from White Shrimp (Penaeus vannamei) Shells Using Binary Ionic Liquid Mixtures. J. Ind. Eng. Chem. 2023, 120, 529–541. [Google Scholar] [CrossRef]
- Hou, F.; Gong, Z.; Jia, F.; Cui, W.; Song, S.; Zhang, J.; Wang, Y.; Wang, W. Insights into the relationships of modifying methods, structure, functional properties, and applications of chitin: A review. Food Chem. 2023, 409, 135336. [Google Scholar] [CrossRef]
- Carrera, C.; Bengoechea, C.; Carrillo, F.; Calero, N. Effect of deacetylation degree and molecular weight on surface properties of chitosan obtained from biowastes. Food Hydrocoll. 2023, 137, 108383. [Google Scholar] [CrossRef]
- Paliwal, C.; Mitra, M.; Bhayani, K.; Bharadwaj, S.V.V.; Ghosh, T.; Dubey, S.; Mishra, S. Bioresource Technology Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 2017, 244, 1216–1226. [Google Scholar] [CrossRef]
- Raposo, M.F.D.J.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 2014, 101, 56–63. [Google Scholar] [CrossRef]
- Morales-Jiménez, M.; Gouveia, L.; Yáñez-Fernández, J.; Castro-Muñoz, R.; Barragán-Huerta, E.B. Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. Coatings 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Bafana, A. Characterization, and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr. Polym. 2013, 95, 746–752. [Google Scholar] [CrossRef]
- Flamm, D.; Blaschek, W. Exopolysaccharides of Synechocystis aquatilis are sulfated arabinofucans containing N-acetyl-fucosamine. Carbohydr. Polym. 2014, 101, 301–306. [Google Scholar] [CrossRef]
- Singh, S.; Das, S. Screening, production, optimization, and characterization of cyanobacterial polysaccharide. World J. Microbiol. Biotechnol. 2011, 27, 1971–1980. [Google Scholar] [CrossRef]
- Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; Michaud, P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Res. 2019, 44, 101711. [Google Scholar] [CrossRef]
- You, T.; Barnett, S.M. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J. 2004, 19, 251–258. [Google Scholar] [CrossRef]
- Patel, A.K.; Laroche, C.; Marcati, A.; Ursu, A.V.; Jubeau, S.; Marchal, L.; Petit, E.; Djelveh, G.; Michaud, P. Separation, and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour. Technol. 2013, 145, 345–350. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction, and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Bhunia, B.; Prasad Uday, U.S.; Oinam, G.; Mondal, A.; Bandyopadhyay, T.K.; Tiwari, O.N. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr. Polym. 2018, 179, 228–243. [Google Scholar] [CrossRef]
- Parati, M.; Khalil, I.; Tchuenbou-magaia, F.; Adamus, G.; Mendrek, B.; Hill, R.; Radecka, I. Building a circular economy around poly (D/L-γ-glutamic acid)—A smart microbial biopolymer. Biotechnol. Adv. 2022, 61, 108049. [Google Scholar] [CrossRef]
- Alphonsa, A.; Hakkim, S.; Lakshmi, N.M.; Arun, K.B.; Madhavan, A.; Sirohi, R.; Tarafdar, A.; Sindhu, R.; Kumar, M.; Pandey, A. Bacterial biopolymers: From production to applications in biomedicine. Sustain. Chem. Pharm. 2022, 25, 100582. [Google Scholar]
- Haque, M.A.; Priya, A.; Hathi, Z.J.; Qin, Z.H.; Mettu, S.; Lin, C.S.K. Advancements, and current challenges in the sustainable downstream processing of bacterial polyhydroxyalkanoates. Curr. Opin. Green Sustain. Chem. 2022, 36, 100631. [Google Scholar] [CrossRef]
- Sharma, L.; Mallick, N. Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: Regulation by pH, light-dark cycles, N and P status and carbon sources. Bioresour. Technol. 2005, 96, 1304–1310. [Google Scholar] [CrossRef]
- Young, S.; Na, M.; Taek, H.; Chan, J.; Jin, I.; Son, J.; Young, S.; Jung, Y.; Baritugo, K.; Pyo, J.; et al. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab. Eng. 2020, 58, 47–81. [Google Scholar]
- Pandey, A.; Adama, N.; Adjallé, K.; Blais, J.-F. Sustainable polyhydroxyalkanoate applications in various fields: A critical review. Int. J. Biol. Macromol. 2022, 221, 1184–1201. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.A.; Taylor, C.S.; Fricker, A.T.R.; Asare, E.; Tetali, S.S.V.; Haycock, J.W.; Roy, I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol. Med. 2022, 28, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Raghavendran, V.; Asare, E.; Roy, I. Bacterial cellulose: Biosynthesis, production, and applications. Adv. Microb. Physiol. 2020, 77, 89–138. [Google Scholar] [CrossRef] [PubMed]
- Lavasani, P.S.; Motevaseli, E.; Sanikhani, N.S.; Modarressi, M.H. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties. Heliyon 2019, 5, e01571. [Google Scholar] [CrossRef] [Green Version]
- Jaroennonthasit, W.; Lam, N.T.; Sukyai, P. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus. Int. J. Biol. Macromol. 2021, 191, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Saroha, V.; Raghuvanshi, S.; Bharti, A.K.; Dutt, D. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydr. Polym. 2021, 260, 117807. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, R.; Mythili, B.; Ramesh, K.; Priya, P.; Srisunmathi, R.; Poornima, S.; Ponmurugan, P.; Philip, J. Optimized production of gamma poly glutamic acid (γ-PGA) using sago. Biocatal. Agric. Biotechnol. 2019, 22, 101413. [Google Scholar] [CrossRef]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.-X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- De Albuquerque, T.L.; Marques Júnior, J.E.; de Queiroz, L.P.; Ricardo, A.D.S.; Rocha, M.V.P. Polylactic acid production from biotechnological routes: A review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar] [CrossRef]
- Jung, Y.K.; Lee, S.Y. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J. Biotechnol. 2011, 151, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Bhatt, A.; Tao, L.; Benavides, P.T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 2022, 380, 135110. [Google Scholar] [CrossRef]
- Bressanin, J.M.; Sampaio, I.L.d.M.; Geraldo, V.C.; Klein, B.C.; Chagas, M.F.; Bonomi, A.; Filho, R.M.; Cavalett, O. Techno-economic and environmental assessment of polylactic acid production integrated with the sugarcane value chain. Sustain. Prod. Consum. 2022, 34, 244–256. [Google Scholar] [CrossRef]
- Mehmood, A.; Raina, N.; Phakeenuya, V.; Wonganu, B.; Cheenkachorn, K. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Mater. Today Proc. 2022, 72, 3049–3055. [Google Scholar] [CrossRef]
- Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar]
- Chuah, H.H. Poly(trimethylene terephthalate). In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2002; ISBN 9780471440260. [Google Scholar]
- Gralén, N.; Svedberg, T. Molecular weight of native cellulose. Nature 1943, 152, 625. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, M.; Lu, X.; Shi, C.; Li, X.; Xin, J.; Yue, G.; Zhang, S. Base-free preparation of low molecular weight chitin from crab shell. Carbohydr. Polym. 2018, 190, 148–155. [Google Scholar] [CrossRef]
- Geresh, S.; Arad, S.M.; Levy-Ontman, O.; Zhang, W.; Tekoah, Y.; Glaser, R. Isolation, and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr. Res. 2009, 344, 343–349. [Google Scholar] [CrossRef]
- Lorini, L.; Martinelli, A.; Capuani, G.; Frison, N.; Reis, M.; Sommer Ferreira, B.; Villano, M.; Majone, M.; Valentino, F. Characterization of Polyhydroxyalkanoates Produced at Pilot Scale from Different Organic Wastes. Front. Bioeng. Biotechnol. 2021, 9, 628719. [Google Scholar] [CrossRef]
- Viamonte-Aristizábal, S.; García-Sancho, A.; Arrabal Campos, F.M.; Martínez-Lao, J.A.; Fernández, I. Synthesis of high molecular weight L-Polylactic acid (PLA) by reactive extrusion at a pilot plant scale: Influence of 1,12-dodecanediol and di(trimethylol propane) as initiators. Eur. Polym. J. 2021, 161, 110818. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.H. Preparation, and characterization of high molecular weight poly(trimethylene terephthalate) by solid-state polymerization. Fibers Polym. 2010, 11, 170–176. [Google Scholar] [CrossRef]
- Oishi, A.; Zhang, M.; Nakayama, K.; Masuda, T.; Taguchi, Y. Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polym. J. 2006, 38, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Weisskopf, K.; Meyerhoff, G. Molecular weight determinations of polyamides by N-trifluoroacetylation. Polymer 1983, 24, 72–76. [Google Scholar] [CrossRef]
- Sherazi, T.A. Ultrahigh Molecular Weight Polyethylene. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. ISBN 978-3-642-40872-4. [Google Scholar]
- Mendoza-Cedeno, S.; Embabi, M.; Chang, E.; Kweon, M.S.; Shivokhin, M.; Pehlert, G.; Lee, P. Influence of molecular weight on high- and low-expansion foam injection molding using linear polypropylene. Polymer 2023, 266, 125611. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Vigato, F.; Angelidaki, I.; Woodley, J.M.; Alvarado-Morales, M. Dissolved CO2 profile in bio-succinic acid production from sugars-rich industrial waste. Biochem. Eng. J. 2022, 187, 108602. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Kumar Thakur, V.; Barkane, A.; Beluns, S. Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. Eur. Polym. J. 2021, 161, 110855. [Google Scholar] [CrossRef]
- Lan, E.I.; Wei, C.T. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab. Eng. 2016, 38, 483–493. [Google Scholar] [CrossRef]
- Khedr, M.S.F. Bio-based polyamide. Phys. Sci. Rev. 2022, 000010151520200076. [Google Scholar] [CrossRef]
- Winnacker, M. Terpene-based polyamides: A sustainable polymer class with huge potential. Curr. Opin. Green Sustain. Chem. 2023, 41, 100819. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Physiochemical properties, and degradation. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128094068. [Google Scholar]
- Basmage, O.M.; Hashmi, M.S.J. Plastic Products in Hospitals and Healthcare Systems. Encycl. Renew. Sustain. Mater. 2020, 1, 648–657. [Google Scholar] [CrossRef]
- Agboola, O.; Sadiku, R.; Mokrani, T.; Amer, I.; Imoru, O. Polyolefins and the environment. In Polyolefin Fibres: Structure, Properties and Industrial Applications, 2nd ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2017; ISBN 9780081012512. [Google Scholar]
- McKeen, L.W. 8.6—Polyester Plastics. In Permeability Properties of Plastics and Elastomers, 4th ed.; Plastics Design Library; William Andrew: Norwich, NY, USA, 2017; pp. 95–114. ISBN 978-0-323-50859-9. [Google Scholar]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, W.; Liu, T.; Zhang, Y.; Li, B. Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery. J. Anal. Appl. Pyrolysis 2022, 161, 105414. [Google Scholar] [CrossRef]
- Kim, N.K.; Lee, S.H.; Park, H.D. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. Bioresour. Technol. 2022, 363, 127931. [Google Scholar] [CrossRef]
- Liu, F.; Qin, B.; He, L.; Song, R. Novel starch/chitosan blending membrane: Antibacterial, permeable, and mechanical properties. Carbohydr. Polym. 2009, 78, 146–150. [Google Scholar] [CrossRef]
- Hardian, R.; Alammar, A.; Holtzl, T.; Szekely, G. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends. J. Membr. Sci. 2022, 658, 120743. [Google Scholar] [CrossRef]
- Abdellah, S.F.; Lovert, A.; Eman, A.W. Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications. Cellulose 2020, 27, 9525–9543. [Google Scholar] [CrossRef]
- Alam, K.S.; Fatema-Tuj-Johora, M.; Khan, G.M.A. Fundamental aspects, and developments in cellulose-based membrane technologies for virus retention: A review. J. Environ. Chem. Eng. 2021, 9, 106401. [Google Scholar] [CrossRef]
- Yang, M.; Lotfikatouli, S.; Chen, Y.; Li, T.; Ma, H.; Mao, X.; Hsiao, B.S. Nanostructured all-cellulose membranes for efficient ultrafiltration of wastewater. J. Membr. Sci. 2022, 650, 120422. [Google Scholar] [CrossRef]
- Lin, J.; Fu, C.; Zeng, W.; Wang, D.; Huang, F.; Lin, S.; Cao, S.; Chen, L.; Ni, Y.; Huang, L. Regulating the structure of cellulose-based ultrafiltration membrane to improve its performance for water purification. Ind. Crops Prod. 2023, 192, 116082. [Google Scholar] [CrossRef]
- Nagahama, H.; Nwe, N.; Jayakumar, R.; Koiwa, S.; Furuike, T.; Tamura, H. Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr. Polym. 2008, 73, 295–302. [Google Scholar] [CrossRef]
- Chakravarty, J.; Semerdzhiev, D.; Silby, M.W.; Ferreira, T.; Brigham, C.J. Properties of solvent-cast chitin membranes and exploration of potential applications. Materialia 2019, 8, 100452. [Google Scholar] [CrossRef]
- Vo, C.N.; Do, D.H.; Bach, T.; Ngoc, Q.; Vo, T. Simple fabrication of a chitin wound healing membrane from Soft-Shell crab carapace. Mater. Lett. 2021, 297, 129995. [Google Scholar]
- Borgohain, R.; Pattnaik, U.; Prasad, B.; Mandal, B. A review on chitosan-based membranes for sustainable CO2 separation applications: Mechanism, issues, and the way forward. Carbohydr. Polym. 2021, 267, 118178. [Google Scholar] [CrossRef] [PubMed]
- Tomietto, P.; Loulergue, P.; Paugam, L.; Audic, J.-L. Biobased polyhydroxyalkanoate (PHA) membranes: Structure/performances relationship. Sep. Purif. Technol. 2020, 252, 117419. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Filipe, A.; Almeida, I.F.; Costa, P.C.; Rosado, C.; Pascoal, C.; Silvestre, A.J.D.; Freire, C.S.R. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: In vitro dissolution and permeation studies. Carbohydr. Polym. 2014, 106, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Hegab, H.M.; Nassar, L.; Wadi, V.S.; Naddeo, V.; Yousef, A.F.; Banat, F.; Hasan, S.W. Asymmetrical ultrafiltration membranes based on polylactic acid for the removal of organic substances from wastewater. J. Water Process Eng. 2022, 45, 102510. [Google Scholar] [CrossRef]
- Freger, V.; Ramon, G.Z. Polyamide desalination membranes: Formation, structure, and properties. Prog. Polym. Sci. 2021, 122, 101451. [Google Scholar] [CrossRef]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Tan, X.; Tan, S.P.; Teo, W.K.; Li, K. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J. Membr. Sci. 2006, 271, 59–68. [Google Scholar] [CrossRef]
- Tasselli, F. Membrane Preparation Techniques. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–3. [Google Scholar] [CrossRef]
- Tan, X.; Rodrigue, D. A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Preparation Methods of Membranes. In Science and Technology of Separation Membranes; Uragami, T. (Ed.) John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–27. [Google Scholar]
- Li, Z.; Qiu, F.; Yue, X.; Tian, Q.; Yang, D.; Zhang, T. Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. J. Environ. Chem. Eng. 2021, 9, 105857. [Google Scholar] [CrossRef]
- Lu, Q.; Li, N. Preparation of hydrophilic polyvinylidene fluoride/polyvinyl alcohol ultrafiltration membrane via polymer/non-solvent co-induced phase separation method towards enhance anti-fouling performance. J. Environ. Chem. Eng. 2021, 9, 106431. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Y.; Pan, G.; Wei, X.; Li, Y.; Shi, H.; Liu, Y. Preparation of high-performance polyamide membrane by surface modification method for desalination. J. Membr. Sci. 2019, 573, 11–20. [Google Scholar] [CrossRef]
- Yao, X.; Hou, X.; Qi, G.; Zhang, R. Preparation of superhydrophobic polyimide fibrous membranes with the controllable surface structure for highly efficient oil-water emulsion and heavy oil separation. J. Environ. Chem. Eng. 2022, 10, 107470. [Google Scholar] [CrossRef]
- Fu, X.Y.; Sotani, T.; Matsuyama, H. Effect of membrane preparation method on the outer surface roughness of cellulose acetate butyrate hollow fiber membrane. Desalination 2008, 233, 10–18. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Kang, W.; Deng, N.; Yan, J.; Ju, J.; Liu, Y.; Cheng, B. Preparation, and characterization of tree-like cellulose nanofiber membranes via electrospinning. Carbohydr. Polym. 2018, 183, 62–69. [Google Scholar] [CrossRef]
- Moriya, A.; Maruyama, T.; Ohmukai, Y.; Sotani, T.; Matsuyama, H. Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods. J. Membr.Sci. 2009, 342, 307–312. [Google Scholar] [CrossRef]
- Iulianelli, A.; Russo, F.; Galiano, F.; Manisco, M.; Figoli, A. Novel bio-polymer based membranes for CO2/CH4 separation. Int. J. Greenh. Gas Control 2022, 117, 103657. [Google Scholar] [CrossRef]
- Soto-Salcido, L.A.; González-Sánchez, G.; Rocha-Gutierrez, B.; Peralta-Perez, R.; Zavala-Díaz, F.J.; Ballinas-Casarrubias, L. Preparation, characterization, and performance of acetylated cellulignin membranes obtained by green methods from biomass. Desalination 2018, 430, 186–196. [Google Scholar] [CrossRef]
- Xue, C.; Hsu, K.M.; Chiu, C.Y.; Chang, Y.K.; Ng, I.S. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere 2021, 266, 128967. [Google Scholar] [CrossRef] [PubMed]
- Tomietto, P.; Russo, F.; Galiano, F.; Loulergue, P.; Salerno, S.; Paugam, L.; Audic, J.L.; De Bartolo, L.; Figoli, A. Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and CyreneTM as green solvent. J. Membr. Sci. 2022, 643, 120061. [Google Scholar] [CrossRef]
- Han, J.; Hoon, Y.; Kong, H.; Han, S.; Bum, H. Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. J. Membr. Sci. 2013, 428, 533–545. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, J.; Ye, Y.; Fang, M.; Lang, J.; Yang, D.; Pan, Z. Biodegradable poly(butylene succinate) nanofibrous membrane treated with oxygen plasma for superhydrophilicity. Surf. Coatings Technol. 2020, 381, 125147. [Google Scholar] [CrossRef]
- Ji, D.; Xiao, C.; An, S.; Chen, K.; Gao, Y.; Zhou, F.; Zhang, T. Completely green and sustainable preparation of PVDF hollow fiber membranes via melt-spinning and stretching method. J. Hazard. Mater. 2020, 398, 122823. [Google Scholar] [CrossRef]
- Yabuno, Y.; Mihara, K.; Miyagawa, N.; Komatsu, K.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Preparation of polyamide–PVDF composite hollow fiber membranes with well-developed interconnected bicontinuous structure using high-temperature rapid NIPS for forward osmosis. J. Membr. Sci. 2020, 612, 118468. [Google Scholar] [CrossRef]
- Sihombing, Y.A.; Sinaga, M.Z.E.; Hardiyanti, R.; Susilawati; Saragi, I.R. Rangga Preparation, characterization, and desalination study of polystyrene membrane integrated with zeolite using the electrospinning method. Heliyon 2022, 8, 4–9. [Google Scholar] [CrossRef]
- Kato, N.; Gonzales, R.R.; Nishitani, A.; Negi, Y.; Ono, T.; Matsuyama, H. Single-step preparation of nanocomposite polyamide 6 hollow fiber membrane with integrally skinned asymmetric structure for organic solvent nanofiltration. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 620, 126538. [Google Scholar] [CrossRef]
- Sharma, N.; Purkait, M.K. Preparation of hydrophilic polysulfone membrane using polyacrylic acid with polyvinyl pyrrolidone. J. Appl. Polym. Sci. 2015, 132, 41964. [Google Scholar] [CrossRef]
- Alasfar, R.H.; Kochkodan, V.; Ahzi, S.; Barth, N.; Koç, M. Preparation and Characterization of Polysulfone Membranes Reinforced with Cellulose Nanofibers. Polymers 2022, 14, 3317. [Google Scholar] [CrossRef]
- Alias, S.S.; Harun, Z.; Shohur, M.F. Effect of monovalent and divalent ions in non-solvent coagulation bath-induced phase inversion on the characterization of a porous polysulfone membrane. Polym. Bull. 2019, 76, 5957–5979. [Google Scholar] [CrossRef]
- Ghasem, N.; Al-Marzouqi, M.; Zhu, L. Preparation, and properties of polyethersulfone hollow fiber membranes with o-xylene as an additive used in membrane contactors for CO2 absorption. Sep. Purif. Technol. 2012, 92, 1–10. [Google Scholar] [CrossRef]
- Robinson, A.J.; Pe, A.; Ali, S.C.; Gonza, J.B.; Holloway, J.L.; Cosgriff-hernandez, E.M. Comparative analysis of fiber alignment methods in electrospinning. Matter 2021, 4, 821–844. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, I.S. Chapter 22—Micro- and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications. In Micro and Nano Technologies, 2nd ed.; Qin, Y., Ed.; William Andrew Publishing: Boston, MA, USA, 2015; pp. 513–548. ISBN 978-0-323-31149-6. [Google Scholar]
- Shen, S.S.; Chen, H.; Wang, R.H.; Ji, W.; Zhang, Y.; Bai, R. Preparation of antifouling cellulose acetate membranes with good hydrophilic and oleophobic surface properties. Mater. Lett. 2019, 252, 1–4. [Google Scholar] [CrossRef]
- Wang, X.; Ba, X.; Cui, N.; Ma, Z.; Wang, L.; Wang, Z.; Gao, X. Preparation, characterisation, and desalination performance study of cellulose acetate membranes with MIL-53(Fe) additive. J. Membr. Sci. 2019, 590, 117057. [Google Scholar] [CrossRef]
- Kim, D.; Nunes, S.P. Green solvents for membrane manufacture: Recent trends and perspectives. Curr. Opin. Green Sustain. Chem. 2021, 28, 100427. [Google Scholar] [CrossRef]
- Kachhadiya, D.D.; Murthy, Z.V.P. Highly efficient chitosan-based bio-polymeric membranes embedded with green solvent encapsulated MIL-53(Fe) for methanol/MTBE separation by pervaporation. J. Environ. Chem. Eng. 2023, 11, 109307. [Google Scholar] [CrossRef]
- Papchenko, K.; Degli, M.; Minelli, M.; Fabbri, P.; Morselli, D.; Grazia, M.; Angelis, D. New sustainable routes for gas separation membranes: The properties of poly ( hydroxybutyrate- co -hydroxyvalerate ) cast from green solvents. J. Membr. Sci. 2022, 660, 120847. [Google Scholar] [CrossRef]
- Rasool, M.A.; Van Goethem, C.; Vankelecom, I.F.J. Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Sep. Purif. Technol. 2020, 232, 115903. [Google Scholar] [CrossRef]
- Rasool, M.A.; Vankelecom, I.F.J. Preparation of full-bio-based nanofiltration membranes. J. Membr. Sci. 2021, 618, 118674. [Google Scholar] [CrossRef]
- Alqaheem, Y.; Alomair, A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Zhang, W.; Zhu, X.; Ru, Y.; Yi, W.; Pang, B.; Liu, T. Porous fibrous bacterial cellulose/La(OH)3 membrane for superior phosphate removal from water. Carbohydr. Polym. 2022, 298, 120135. [Google Scholar] [CrossRef]
- Jiang, F.; Li, X.; Duan, Y.; Li, Q.; Qu, Y.; Zhong, G.; Qiu, M.; Zhang, J.; Zhang, C.; Pan, X. Extraction, and characterization of chitosan from Eupolyphaga sinensis Walker and its application in the preparation of electrospinning nanofiber membranes. Colloids Surfaces B Biointerfaces 2023, 222, 113030. [Google Scholar] [CrossRef] [PubMed]
- Nassar, L.; Hegab, H.M.; Khalil, H.; Wadi, V.S.; Naddeo, V.; Banat, F.; Hasan, S.W. Development of green polylactic acid asymmetric ultrafiltration membranes for nutrient removal. Sci. Total Environ. 2022, 824, 153869. [Google Scholar] [CrossRef]
- Tomietto, P.; Carré, M.; Loulergue, P.; Paugam, L.; Audic, J.-L. Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process. Polymer 2020, 204, 122813. [Google Scholar] [CrossRef]
- Lakshmi, D.S.; Radha, K.S.; Castro-Muñoz, R.; Tańczyk, M. Emerging Trends in Porogens toward Material Fabrication: Recent Progresses and Challenges. Polymers 2022, 14, 5209. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Tong, H.; Lu, J.; Cheng, Y.; Qian, F.; Tao, Y.; Wang, H. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water-resistant properties. Carbohydr. Polym. 2021, 270, 118381. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process. Food Bioprod. Process. 2015, 95, 7–18. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Cui, J.; Keshari, S.; Xiong, R.; Huang, C. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Sep. Purif. Technol. 2021, 277, 119623. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.F.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng. 2022, 10, 107633. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Vatanpour, V.; Mehrabi, M.; Masteri-Farahani, M.; Behroozi, A.H.; Niakan, M.; Koyuncu, I. Sulfonic acid functionalized dendrimer-grafted cellulose as a charge and hydrophilic modifier of cellulose acetate membranes in removal of inorganic and organic pollutants. J. Water Process Eng. 2022, 50, 103307. [Google Scholar] [CrossRef]
- Keskin, B.; Naziri Mehrabani, S.A.; Arefi-Oskoui, S.; Vatanpour, V.; Orhun Teber, O.; Khataee, A.; Orooji, Y.; Koyuncu, I. Development of Ti2AlN MAX phase/cellulose acetate nanocomposite membrane for removal of dye, protein and lead ions. Carbohydr. Polym. 2022, 296, 119913. [Google Scholar] [CrossRef] [PubMed]
- Kian, L.K.; Jawaid, M.; Nasef, M.M.; Fouad, H.; Karim, Z. Poly(lactic acid)/poly(butylene succinate) dual-layer membranes with cellulose nanowhisker for heavy metal ion separation. Int. J. Biol. Macromol. 2021, 192, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.E.; Pervez, M.N.; Jianming, W.; Gao, Z.; Stylios, G.K.; Hassan, M.M.; Song, H.; Naddeo, V. Chitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 106693. [Google Scholar] [CrossRef]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Walvekar, R. Investigating chromium Cr (VI) removal using imidazolium-based ionic liquid-chitosan composite adsorptive film. J. Mol. Liq. 2022, 347, 118317. [Google Scholar] [CrossRef]
- Du, S.; Zhao, P.; Wang, L.; He, G.; Jiang, X. Progresses of advanced anti-fouling membrane and membrane processes for high salinity wastewater treatment. Results Eng. 2023, 17, 100995. [Google Scholar] [CrossRef]
- Xiao, T.; Zhu, Z.; Li, L.; Shi, J.; Li, Z.; Zuo, X. Membrane fouling and cleaning strategies in microfiltration/ultrafiltration and dynamic membrane. Sep. Purif. Technol. 2023, 318, 123977. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Liu, Z.; Xiao, C. A new superhydrophobic polypropylene hollow fiber membrane preparation method and its application in the treatment of brine with high salt concentration. J. Environ. Chem. Eng. 2023, 11, 109054. [Google Scholar] [CrossRef]
- Ghiggi, F.F.; Pollo, L.D.; Cardozo, N.S.M.; Tessaro, I.C. Preparation, and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property. Eur. Polym. J. 2017, 92, 61–70. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, M.; Yuan, F.; Yang, L.; Chen, C.; Sun, D. Bio-inspired fabrication of highly permeable and anti-fouling ultrafiltration membranes based on bacterial cellulose for efficient removal of soluble dyes and insoluble oils. J. Membr. Sci. 2021, 621, 118982. [Google Scholar] [CrossRef]
Application | Mechanism | Bio-Based Polymer | Contaminants | Removal Efficiency (%) | References |
---|---|---|---|---|---|
Water treatment | Recovery | Cellulose acetate modified by sulfonic acid functionalized dendrimer-grafter cellulose | Pb(II) | >98 | [141] |
Na2SO4 | 97 | ||||
Rose Bengal dye | 98.6 | ||||
Reactive Blue 50 dye | 96.8 | ||||
Azithromycin | 88.6 | ||||
BSA | 99 | ||||
Cellulose acetate with Ti2AIN MAX | Reactive black 5 | 70.7 | [142] | ||
Reactive red 120 | 93.5 | ||||
BSA | >98 | ||||
PLA/PBS with cellulose | Cobalt ion | 83 | [143] | ||
Nickel ion | 84 | ||||
Potable water purification | Adsorption | Chitosan-functionalized-PVA/Sodium alginate | As(III) | 50–90 | [144] |
Wastewater treatment | Chitosan modified with 1-butyl-3-methylimidazolium acetate | Cr(VI) | 87 | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Jiménez, M.; Palacio, D.A.; Palencia, M.; Meléndrez, M.F.; Rivas, B.L. Bio-Based Polymeric Membranes: Development and Environmental Applications. Membranes 2023, 13, 625. https://doi.org/10.3390/membranes13070625
Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-Based Polymeric Membranes: Development and Environmental Applications. Membranes. 2023; 13(7):625. https://doi.org/10.3390/membranes13070625
Chicago/Turabian StyleMorales-Jiménez, Mónica, Daniel A. Palacio, Manuel Palencia, Manuel F. Meléndrez, and Bernabé L. Rivas. 2023. "Bio-Based Polymeric Membranes: Development and Environmental Applications" Membranes 13, no. 7: 625. https://doi.org/10.3390/membranes13070625
APA StyleMorales-Jiménez, M., Palacio, D. A., Palencia, M., Meléndrez, M. F., & Rivas, B. L. (2023). Bio-Based Polymeric Membranes: Development and Environmental Applications. Membranes, 13(7), 625. https://doi.org/10.3390/membranes13070625