Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrophysiological Assay: The Formation of the Planar Lipid Bilayers and Their Modification by an Antibiotic and Phytochemicals
2.3. Absorbance Spectroscopy Assay: The Formation of the Polyene-Loaded Lipid Vesicles and Their Modification by Phloretin
2.4. Differential Scanning Microcalorimetry
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Gangneux, J.P.; Bougnoux, M.E.; Hennequin, C.; Godet, C.; Chandenier, J.; Denning, D.W.; Dupont, B.; LIFE Program, the Société Française de Mycologie Médicale SFMM-Study Group. An estimation of burden of serious fungal infections in France. J. Mycol. Med. 2016, 26, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Cornillet, A.; Camus, C.; Nimubona, S.; Gandemer, V.; Tattevin, P.; Belleguic, C.; Chevrier, S.; Meunier, C.; Lebert, C.; Aupée, M.; et al. Comparison of epidemiological, clinical, and biological features of invasive aspergillosis in neutropenic and nonneutropenic patients: A 6-year survey. Clin. Infect. Dis. 2006, 43, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinch, A.; Furebring, M.; Chryssanthou, E.; Hallböök, H. Invasive fungal infection by Peziza ostracoderma in an immunocompromised patient. Med. Mycol. Case Rep. 2022, 39, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Konsoula, A.; Agouridis, A.P.; Markaki, L.; Tsioutis, C.; Spernovasilis, N. Lomentospora prolificans disseminated infections: A systematic review of reported cases. Pathogens 2022, 12, 67. [Google Scholar] [CrossRef]
- Chang, Y.L.; Yu, S.J.; Heitman, J.; Wellington, M.; Chen, Y.L. New facets of antifungal therapy. Virulence 2017, 8, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Lurati, M.; Baudraz-Rosselet, F.; Vernez, M.; Spring, P.; Bontems, O.; Fratti, M.; Monod, M. Efficacious treatment of non-dermatophyte mould onychomycosis with topical amphotericin B. Dermatology 2011, 223, 289–292. [Google Scholar] [CrossRef]
- Thanyasrisung, P.; Satitviboon, W.; Howattanapanich, S.; Matangkasombut, O. Antifungal drug resistance in oral Candida isolates from HIV-infected and healthy individuals and efficacy of chitosan as an alternative antifungal agent. Arch. Oral Biol. 2023, 147, 105628. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharjee, M.; Hazra, A.; Mukhopadhyay, P.; Ray, B.K.; Chatterjee, S.; Dubey, S. Pharmacovigilance study of amphotericin B for mucormycosis in post-COVID and non-COVID patients at a tertiary care hospital in Eastern India. Indian J. Pharmacol. 2022, 54, 417–422. [Google Scholar] [CrossRef]
- Andreoli, T.E. The structure and function of amphotericin B-cholesterol pores in lipid bilayer membranes. Ann. NY Acad. Sci. 1974, 235, 448–468. [Google Scholar] [CrossRef]
- de Kruijff, B.; Gerritsen, W.J.; Oerlemans, A.; Demel, R.A.; van Deenen, L.L. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim. Biophys. Acta 1974, 339, 30–43. [Google Scholar] [CrossRef]
- Marty, A.; Finkelstein, A. Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action. J. Gen. Physiol. 1975, 65, 515–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holz, R.W. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann. NY Acad. Sci. 1974, 235, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, M.E.; Finkelstein, A. Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J. Membr. Biol. 1984, 80, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Tevyashova, A.; Efimova, S.; Alexandrov, A.; Omelchuk, O.; Ghazy, E.; Bychkova, E.; Zatonsky, G.; Grammatikova, N.; Dezhenkova, L.; Solovieva, S.; et al. Semisynthetic amides of amphotericin B and nystatin A1: A comparative study of in vitro activity/toxicity ratio in relation to selectivity to ergosterol membranes. Antibiotics 2023, 12, 151. [Google Scholar] [CrossRef]
- Umegawa, Y.; Yamamoto, T.; Dixit, M.; Funahashi, K.; Seo, S.; Nakagawa, Y.; Suzuki, T.; Matsuoka, S.; Tsuchikawa, H.; Hanashima, S.; et al. Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study. Sci. Adv. 2022, 8, eabo2658. [Google Scholar] [CrossRef]
- Cavassin, F.B.; Baú-Carneiro, J.L.; Vilas-Boas, R.R.; Queiroz-Telles, F. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections. Infect. Dis. Ther. 2021, 10, 115–147. [Google Scholar] [CrossRef]
- Campbell, B.C.; Chan, K.L.; Kim, J.H. Chemosensitization as a means to augment commercial antifungal agents. Front. Microbiol. 2012, 3, 79. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.M.M.; Arcanjo, D.D.R.; Figueiredo, K.A.; Oliveira, J.S.S.M.; Viana, F.J.C.; Coelho, E.S.; Lopes, G.L.N.; Gonçalves, J.C.R.; Carvalho, A.L.M.; Rizzo, M.D.S.; et al. Gallic and ellagic acids are promising adjuvants to conventional amphotericin B for the treatment of cutaneous Leishmaniasis. Antimicrob. Agents Chemother. 2020, 64, e00807-20. [Google Scholar] [CrossRef]
- Oliveira, L.; Ferrarini, M.; Dos Santos, A.P.; Varela, M.T.; Corrêa, I.T.S.; Tempone, A.G.; Melhem, M.S.C.; Vallim, M.A.; Fernandes, J.P.S.; Pascon, R.C. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur. J. Pharm. Sci. 2020, 153, 105473. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Araújo, G.D.S.; Fonseca, X.M.Q.C.; Guedes, G.M.M.; Aguiar, L.; Castelo-Branco, D.S.C.M.; Cordeiro, R.A.; Sidrim, J.J.C.; Pereira Neto, W.A.; Rocha, M.F.G. Antifungal effect of anthraquinones against Cryptococcus neoformans: Detection of synergism with amphotericin B. Med. Mycol. 2020, 14, myaa081. [Google Scholar] [CrossRef]
- Nidhi, P.; Rolta, R.; Kumar, V.; Dev, K.; Sourirajan, A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J. Ethnopharmacol. 2020, 262, 113135. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol. 2016, 76, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother. 2004, 53, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.; Soares, D.C.; Nascimento, M.T.; Pinto-da-Silva, L.H.; Sarzedas, C.G.; Tinoco, L.W.; Saraiva, E.M. Resveratrol is active against Leishmania amazonensis: In vitro effect of its association with amphotericin B. Antimicrob. Agents Chemother. 2014, 58, 6197–6208. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.N.; Khan, S.; Misba, L.; Sharief, M.; Hashmi, A.; Khan, A.U. Synergistic fungicidal activity with low doses of eugenol and amphotericin B against Candida albicans. Biochem. Biophys. Res. Commun. 2019, 518, 459–464. [Google Scholar] [CrossRef]
- You, J.; Du, L.; King, J.B.; Hall, B.E.; Cichewicz, R.H. Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem. Biol. 2013, 8, 840–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Poeta, M.; Chen, S.F.; Von Hoff, D.; Dykstra, C.C.; Wani, M.C.; Manikumar, G.; Heitman, J.; Wall, M.E.; Perfect, J.R. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. Antimicrob. Agents Chemother. 1999, 43, 2862–2868. [Google Scholar] [CrossRef] [Green Version]
- Montal, M.; Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 1972, 69, 3561356-6. [Google Scholar] [CrossRef]
- Yamskov, I.A.; Kuskov, A.N.; Babievskiĭ, K.K.; Berezin, B.B.; Kraiukhina, M.A.; Samoĭlova, N.A.; Tikhonov, V.E.; Shtil’man, V.I. New liposomal forms of antifungal antibiotics, modified by amphiphilic polymers. Appl. Biochem. Microbiol. 2008, 44, 688–693. [Google Scholar] [CrossRef]
- Oda, M.N.; Hargreaves, P.L.; Beckstead, J.A.; Redmond, K.A.; van Antwerpen, R.; Ryan, R.O. Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B. J. Lipid Res. 2006, 47, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolard, J.; Legrand, P.; Heitz, F.; Cybulska, B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991, 30, 5707–5715. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, V.; Prasad, R. Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS ONE. 2012, 7, e39812. [Google Scholar] [CrossRef] [Green Version]
- Löffler, J.; Einsele, H.; Hebart, H.; Schumacher, U.; Hrastnik, C.; Daum, G. Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol. Lett. 2000, 185, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Zlodeeva, P.D.; Shekunov, E.V.; Ostroumova, O.S.; Efimova, S.S. The degree of hydroxylation of phenolic rings determines the ability of flavonoids and stilbenes to inhibit calcium-mediated membrane fusion. Nutrients 2023, 15, 1121. [Google Scholar] [CrossRef] [PubMed]
- Efimova, S.S.; Zakharova, A.A.; Medvedev, R.Y.; Ostroumova, O.S. Ion channels induced by antimicrobial agents in model lipid membranes are modulated by plant polyphenols through surrounding lipid media. J. Membr. Biol. 2018, 251, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Efimova, S.S.; Zakharova, A.A.; Chernyshova, D.N.; Ostroumova, O.S. The specific effect of grapefruit seed, sea-buckthorn leaves, and chaga extracts on the properties of model lipid membranes. Cell Tiss. Biol. 2023, 17, 72–80. [Google Scholar] [CrossRef]
- Pérez-Lara, A.; Ausili, A.; Aranda, F.J.; de Godos, A.; Torrecillas, A.; Corbalán-García, S.; Gómez-Fernández, J.C. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. J. Phys. Chem. B. 2010, 114, 9778–9786. [Google Scholar] [CrossRef]
- Efimova, S.S.; Zakharova, A.A.; Ostroumova, O.S. Alkaloids modulate the functioning of ion channels produced by antimicrobial agents via an influence on the lipid host. Front. Cell Dev.Biol. 2020, 8, 537. [Google Scholar] [CrossRef]
- Antillón, A.; de Vries, A.H.; Espinosa-Caballero, M.; Falcón-González, J.M.; Flores Romero, D.; González-Damián, J.; Jiménez-Montejo, F.E.; León-Buitimea, A.; López-Ortiz, M.; Magaña, R.; et al. An amphotericin B derivative equally potent to amphotericin B and with increased safety. PLoS ONE. 2016, 11, e0162171. [Google Scholar] [CrossRef] [Green Version]
- Budziak, I.; Arczewska, M.; Kamiński, D.M. Structure and physical properties of cardamonin: A spectroscopic and computational approach. Molecules 2020, 25, 4070. [Google Scholar] [CrossRef]
- Łodyga-Chruścińska, E.; Kowalska-Baron, A.; Błazińska, P.; Pilo, M.; Zucca, A.; Korolevich, V.M.; Cheshchevik, V.T. Position impact of hydroxy groups on spectral, acid-base profiles and DNA interactions of several monohydroxy flavanones. Molecules 2019, 24, 3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, S.; Manet, I.; Manoli, F.; Marconi, G. Structure and properties of licochalcone A-human serum albumin complexes in solution: A spectroscopic, photophysical and computational approach to understand drug-protein interaction. Phys. Chem. Chem. Phys. 2008, 10, 6597–6606. [Google Scholar] [CrossRef] [PubMed]
- Darshani, P.; Gumpu, M.B.; Thumpati, P.; Rayappan, J.B.B.; Ravichandiran, V.; Pazhani, G.P.; Veerapandian, M. Chemically synthesized butein and butin: Optical, structure and electrochemical redox functionality at electrode interface. J. Photochem. Photobiol. B 2018, 182, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Van Nong, H.; Hung, L.X.; Thang, P.N.; Chinh, V.D.; Vu, L.V.; Dung, P.T.; Van Trung, T.; Nga, P.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus 2016, 5, 1147. [Google Scholar] [CrossRef] [Green Version]
- Zsila, F.; Hazai, E.; Sawyer, L. Binding of the pepper alkaloid piperine to bovine beta-lactoglobulin: Circular dichroism spectroscopy and molecular modeling study. J. Agric. Food Chem. 2005, 53, 10179–10185. [Google Scholar] [CrossRef]
- Kasumov, K.M.; Karakozov, S.D. Effect of amphotericin B added to one side of a membrane. Biofizika. 1985, 30, 281–284. [Google Scholar]
- Chulkov, E.G.; Schagina, L.V.; Ostroumova, O.S. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore. Biochim. Biophys. Acta 2015, 1848 Pt. A, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Ingólfsson, H.I.; Thakur, P.; Herold, K.F.; Hobart, E.A.; Ramsey, N.B.; Periole, X.; de Jong, D.H.; Zwama, M.; Yilmaz, D.; Hall, K.; et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014, 9, 1788–1798. [Google Scholar] [CrossRef]
- Neumann, A.; Baginski, M.; Czub, J. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. J. Am. Chem. Soc. 2010, 132, 18266–18272. [Google Scholar] [CrossRef]
- Baran, M.; Borowski, E.; Mazerski, J. Molecular modeling of amphotericin B-ergosterol primary complex in water II. Biophys. Chem. 2009, 141, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Ostroumova, O.S.; Efimova, S.S.; Chulkov, E.G.; Schagina, L.V. The interaction of dipole modifiers with polyene-sterol complexes. PLoS ONE. 2012, 7, e45135. [Google Scholar] [CrossRef] [PubMed]
- Ostroumova, O.S.; Efimova, S.S.; Mikhailova, E.V.; Schagina, L.V. The interaction of dipole modifiers with amphotericin-ergosterol complexes. Effects of phospholipid and sphingolipid membrane composition. Eur. Biophys. J. 2014, 43, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cournia, Z.; Ullmann, G.M.; Smith, J.C. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: A molecular dynamics simulation study. J. Phys. Chem. 2007, 111, 1786–1801. [Google Scholar] [CrossRef] [PubMed]
- GUSAR Software. Available online: https://www.pharmaexpert.ru/GUSAR/AcuToxPredict/ (accessed on 31 May 2023).
- Liao, W.Y.; Shen, C.N.; Lin, L.H.; Yang, Y.L.; Han, H.Y.; Chen, J.W.; Kuo, S.C.; Wu, S.H.; Liaw, C.C. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J. Nat. Prod. 2012, 75, 630–635. [Google Scholar] [CrossRef] [PubMed]
Phytochemical | Im/Io | −ΔTm, °C | ΔΔTb, °C | |
---|---|---|---|---|
POPC/ERG | POPC/CHOL | |||
phloretin | 18.1 ± 14.0 | 0.9 ± 0.1 | 1.2 ± 0.3 [34] | 5.1 ± 0.7 [34] |
phlorizin | 4.3 ± 1.1 | 3.2 ± 0.6 | 0.6 ± 0.1 | 0.6 ± 0.2 |
cardamonin | 0.7 ± 0.2 | n.d. | 1.5 ± 0.6 [35] | 2.4 ± 0.5 [35] |
naringenin | 2.7 ± 0.5 | 1.4 ± 0.5 | 1.3 ± 0.2 [35] | 1.9 ± 0.2 [35] |
catechin | 1.7 ± 0.2 | 1.0 ± 0.1 | 0.3 ± 0.1 [34] | 1.3 ± 0.2 [34] |
taxifolin | 3.5 ± 1.3 | 1.1 ± 0.1 | 0.9 ± 0.1 [34] | 1.4 ± 0.2 [34] |
quercetin | 6.2 ± 2.6 | 1.1 ± 0.1 | 0.3 ± 0.1 [36] | 3.2 ± 0.3 [36] |
biochanin A | 11.9 ± 6.7 | 0.8 ± 0.1 | 0.9 ± 0.1 | 2.7 ± 0.3 |
genistein | 9.8 ± 4.4 | 0.9 ± 0.1 | 0.2 ± 0.1 [34] | 0.7 ± 0.1 [34] |
resveratrol | 6.7 ± 1.9 | 0.9 ± 0.2 | 1.9 ± 0.2 [35] | 2.3 ± 0.4 [35] |
4′-hydroxychalcone | 0.7 ± 0.2 | ND | 2.0 ± 0.5 [35] | 4.9 ± 0.6 [35] |
licochalcone A | 0.6 ± 0.1 | ND | 1.8 ± 0.1 [35] | 4.5 ± 0.4 [35] |
butein | 0.4 ± 0.1 | ND | 2.3 ± 0.5 [35] | 5.1 ± 0.4 [35] |
curcumin | 0.5 ± 0.1 | ND | 2.6 [37] * | 8.6 [37] * |
quinine | 4.9 ± 2.9 | 1.6 ± 0.2 | 0.6 ± 0.1 [38] | 0.8 ± 0.1 [38] |
colchicine | 1.1 ± 0.3 | ND | 0.8 ± 0.3 [38] | 1.9 ± 0.3 [38] |
piperine | 0.4 ± 0.1 | ND | 2.9 ± 0.3 [38] | 3.4 ± 0.2 [38] |
dihydrocapsaicin | 1.9 ± 0.3 | 1.7 ± 0.2 | 4.1 ± 0.2 [38] | 4.5 ± 0.4 [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efimova, S.S.; Malykhina, A.I.; Ostroumova, O.S. Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. Membranes 2023, 13, 670. https://doi.org/10.3390/membranes13070670
Efimova SS, Malykhina AI, Ostroumova OS. Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. Membranes. 2023; 13(7):670. https://doi.org/10.3390/membranes13070670
Chicago/Turabian StyleEfimova, Svetlana S., Anna I. Malykhina, and Olga S. Ostroumova. 2023. "Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals" Membranes 13, no. 7: 670. https://doi.org/10.3390/membranes13070670
APA StyleEfimova, S. S., Malykhina, A. I., & Ostroumova, O. S. (2023). Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. Membranes, 13(7), 670. https://doi.org/10.3390/membranes13070670